Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313484726> ?p ?o ?g. }
- W4313484726 abstract "Neuromorphic architectures implement low-power machine learning applications using spike-based biological neuron models trained with bio-inspired or machine learning algorithms. Prior work on simulating Spiking Neural Networks (SNNs) focused on simulating emerging compute in-memory (CIM) architectures, while prior work on mapping SNNs focused mainly on minimizing inter-core communication or resource utilization and targeted either emerging CIM architectures or specific target platforms. SNN mapping choices on a neuromoprhic multi-processor platform can impact performance and energy consumption. In this paper, we introduce a simulation framework that evaluates application mapping on a user-defined NoC-based multi-core digital neuromorphic architecture. Our simulator evaluates latency and energy based on mapping and abstract spike activity traces which indicate the firing of neurons at specific discrete timesteps defined by the application. We create two hardware models based on reported work in literature and show the evaluation of different mapping scenarios for a state-of-the-art SNN benchmark." @default.
- W4313484726 created "2023-01-06" @default.
- W4313484726 creator A5032436846 @default.
- W4313484726 creator A5081768631 @default.
- W4313484726 creator A5083377631 @default.
- W4313484726 date "2022-08-01" @default.
- W4313484726 modified "2023-09-26" @default.
- W4313484726 title "DNAsim: Evaluation Framework for Digital Neuromorphic Architectures" @default.
- W4313484726 cites W1505822854 @default.
- W4313484726 cites W1604973310 @default.
- W4313484726 cites W2092322180 @default.
- W4313484726 cites W2108727711 @default.
- W4313484726 cites W2157225945 @default.
- W4313484726 cites W2159951683 @default.
- W4313484726 cites W2169688337 @default.
- W4313484726 cites W2783525259 @default.
- W4313484726 cites W2798763859 @default.
- W4313484726 cites W2971963594 @default.
- W4313484726 cites W2974374491 @default.
- W4313484726 cites W2989683650 @default.
- W4313484726 cites W3031505884 @default.
- W4313484726 cites W3045879661 @default.
- W4313484726 cites W3083234088 @default.
- W4313484726 cites W3083683713 @default.
- W4313484726 cites W3090163409 @default.
- W4313484726 cites W3099878876 @default.
- W4313484726 cites W3105841399 @default.
- W4313484726 cites W3124237980 @default.
- W4313484726 cites W3129171794 @default.
- W4313484726 cites W3139512791 @default.
- W4313484726 cites W3162020142 @default.
- W4313484726 cites W3174379061 @default.
- W4313484726 cites W3181416725 @default.
- W4313484726 cites W3191283164 @default.
- W4313484726 cites W3198541127 @default.
- W4313484726 cites W3205332351 @default.
- W4313484726 cites W3206817059 @default.
- W4313484726 cites W4206696009 @default.
- W4313484726 cites W4225708293 @default.
- W4313484726 cites W4231081240 @default.
- W4313484726 cites W4247624284 @default.
- W4313484726 cites W4280644512 @default.
- W4313484726 doi "https://doi.org/10.1109/dsd57027.2022.00065" @default.
- W4313484726 hasPublicationYear "2022" @default.
- W4313484726 type Work @default.
- W4313484726 citedByCount "0" @default.
- W4313484726 crossrefType "proceedings-article" @default.
- W4313484726 hasAuthorship W4313484726A5032436846 @default.
- W4313484726 hasAuthorship W4313484726A5081768631 @default.
- W4313484726 hasAuthorship W4313484726A5083377631 @default.
- W4313484726 hasConcept C113775141 @default.
- W4313484726 hasConcept C115903868 @default.
- W4313484726 hasConcept C11731999 @default.
- W4313484726 hasConcept C118524514 @default.
- W4313484726 hasConcept C119599485 @default.
- W4313484726 hasConcept C127413603 @default.
- W4313484726 hasConcept C13280743 @default.
- W4313484726 hasConcept C149635348 @default.
- W4313484726 hasConcept C151927369 @default.
- W4313484726 hasConcept C154945302 @default.
- W4313484726 hasConcept C185798385 @default.
- W4313484726 hasConcept C18903297 @default.
- W4313484726 hasConcept C205649164 @default.
- W4313484726 hasConcept C2742236 @default.
- W4313484726 hasConcept C2780165032 @default.
- W4313484726 hasConcept C2781390188 @default.
- W4313484726 hasConcept C41008148 @default.
- W4313484726 hasConcept C50644808 @default.
- W4313484726 hasConcept C76155785 @default.
- W4313484726 hasConcept C82876162 @default.
- W4313484726 hasConcept C86803240 @default.
- W4313484726 hasConceptScore W4313484726C113775141 @default.
- W4313484726 hasConceptScore W4313484726C115903868 @default.
- W4313484726 hasConceptScore W4313484726C11731999 @default.
- W4313484726 hasConceptScore W4313484726C118524514 @default.
- W4313484726 hasConceptScore W4313484726C119599485 @default.
- W4313484726 hasConceptScore W4313484726C127413603 @default.
- W4313484726 hasConceptScore W4313484726C13280743 @default.
- W4313484726 hasConceptScore W4313484726C149635348 @default.
- W4313484726 hasConceptScore W4313484726C151927369 @default.
- W4313484726 hasConceptScore W4313484726C154945302 @default.
- W4313484726 hasConceptScore W4313484726C185798385 @default.
- W4313484726 hasConceptScore W4313484726C18903297 @default.
- W4313484726 hasConceptScore W4313484726C205649164 @default.
- W4313484726 hasConceptScore W4313484726C2742236 @default.
- W4313484726 hasConceptScore W4313484726C2780165032 @default.
- W4313484726 hasConceptScore W4313484726C2781390188 @default.
- W4313484726 hasConceptScore W4313484726C41008148 @default.
- W4313484726 hasConceptScore W4313484726C50644808 @default.
- W4313484726 hasConceptScore W4313484726C76155785 @default.
- W4313484726 hasConceptScore W4313484726C82876162 @default.
- W4313484726 hasConceptScore W4313484726C86803240 @default.
- W4313484726 hasFunder F4320321800 @default.
- W4313484726 hasLocation W43134847261 @default.
- W4313484726 hasOpenAccess W4313484726 @default.
- W4313484726 hasPrimaryLocation W43134847261 @default.
- W4313484726 hasRelatedWork W2252489915 @default.
- W4313484726 hasRelatedWork W2735289987 @default.
- W4313484726 hasRelatedWork W2744382155 @default.
- W4313484726 hasRelatedWork W2764671451 @default.