Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313484997> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4313484997 abstract "Abstract We live in a digitally connected world inspired by state-of-the-art ICT technologies and networks, inasmuch as the use of digital gadgets and apps is exponentially increasing in all domains of life. In parallel, artificial intelligence has evolved as an essential tool in all sorts of applications and systems such as healthcare systems. Healthcare is the key domain where the use of ICT infrastructure, technologies and artificial intelligence are playing a major role in providing connected and personalized digital health experiences. The vision is to provide intelligent and customized digital health solutions and involve the masses in personal health monitoring. This research proposes AiDHealth as an intelligent personal health monitoring framework based on artificial intelligence for healthcare data analytics and connectivity for personal health monitoring. AiDHealth relies on various machine learning and deep learning models for achieving prediction accuracy in healthcare data analytics. The extensive Pima Indian Diabetes (PID) dataset has been used for investigation. The findings of our experiments illustrate the effectiveness and suitability of the suggested MLPD model. AdaBoost classifier performance has the highest accuracy in prediction when calculated to the individual classifiers. The AdaBoost classifier produced the best accuracy i.e., 0.975%. The results reveal improvements to state-of-the-art procedures in the proposed model. Next, we trained the models and produced a 10-fold cross-validation illness risk index for each sample. Our findings suggest a need for greater experiments to compare the above-mentioned machine learning methods. We identified the AdaBoost classifier and Decision Tree classifiers with the best prediction with an average of 0.975% and a work Curve Area (AUC) of 0.994%. Thus, because the design of the AdaBoost classifier is superior, it can forecast the danger of type 2 diabetes more accurately than the existing algorithms and lead to intelligent prevention and control of diabetes." @default.
- W4313484997 created "2023-01-06" @default.
- W4313484997 creator A5002607689 @default.
- W4313484997 creator A5030389615 @default.
- W4313484997 creator A5041539423 @default.
- W4313484997 creator A5088929338 @default.
- W4313484997 date "2023-01-04" @default.
- W4313484997 modified "2023-10-17" @default.
- W4313484997 title "AiDHealth: An AI-enabled Digital Health Framework for Connected Health and Personal Health Monitoring" @default.
- W4313484997 cites W2145237807 @default.
- W4313484997 cites W2153869637 @default.
- W4313484997 cites W2443862987 @default.
- W4313484997 cites W2560720192 @default.
- W4313484997 cites W2753920499 @default.
- W4313484997 cites W2765995311 @default.
- W4313484997 cites W2922046552 @default.
- W4313484997 cites W2964274014 @default.
- W4313484997 cites W2998807005 @default.
- W4313484997 cites W3007048712 @default.
- W4313484997 cites W3030348857 @default.
- W4313484997 cites W3121197223 @default.
- W4313484997 cites W807187018 @default.
- W4313484997 doi "https://doi.org/10.21203/rs.3.rs-2402505/v1" @default.
- W4313484997 hasPublicationYear "2023" @default.
- W4313484997 type Work @default.
- W4313484997 citedByCount "0" @default.
- W4313484997 crossrefType "posted-content" @default.
- W4313484997 hasAuthorship W4313484997A5002607689 @default.
- W4313484997 hasAuthorship W4313484997A5030389615 @default.
- W4313484997 hasAuthorship W4313484997A5041539423 @default.
- W4313484997 hasAuthorship W4313484997A5088929338 @default.
- W4313484997 hasBestOaLocation W43134849971 @default.
- W4313484997 hasConcept C119857082 @default.
- W4313484997 hasConcept C141404830 @default.
- W4313484997 hasConcept C154945302 @default.
- W4313484997 hasConcept C160735492 @default.
- W4313484997 hasConcept C162324750 @default.
- W4313484997 hasConcept C2522767166 @default.
- W4313484997 hasConcept C2780433410 @default.
- W4313484997 hasConcept C41008148 @default.
- W4313484997 hasConcept C50522688 @default.
- W4313484997 hasConcept C79158427 @default.
- W4313484997 hasConcept C84525736 @default.
- W4313484997 hasConcept C95623464 @default.
- W4313484997 hasConceptScore W4313484997C119857082 @default.
- W4313484997 hasConceptScore W4313484997C141404830 @default.
- W4313484997 hasConceptScore W4313484997C154945302 @default.
- W4313484997 hasConceptScore W4313484997C160735492 @default.
- W4313484997 hasConceptScore W4313484997C162324750 @default.
- W4313484997 hasConceptScore W4313484997C2522767166 @default.
- W4313484997 hasConceptScore W4313484997C2780433410 @default.
- W4313484997 hasConceptScore W4313484997C41008148 @default.
- W4313484997 hasConceptScore W4313484997C50522688 @default.
- W4313484997 hasConceptScore W4313484997C79158427 @default.
- W4313484997 hasConceptScore W4313484997C84525736 @default.
- W4313484997 hasConceptScore W4313484997C95623464 @default.
- W4313484997 hasLocation W43134849971 @default.
- W4313484997 hasOpenAccess W4313484997 @default.
- W4313484997 hasPrimaryLocation W43134849971 @default.
- W4313484997 hasRelatedWork W2553238562 @default.
- W4313484997 hasRelatedWork W3083327307 @default.
- W4313484997 hasRelatedWork W3170784702 @default.
- W4313484997 hasRelatedWork W3204641204 @default.
- W4313484997 hasRelatedWork W3212730154 @default.
- W4313484997 hasRelatedWork W4200057378 @default.
- W4313484997 hasRelatedWork W4210726739 @default.
- W4313484997 hasRelatedWork W4249229055 @default.
- W4313484997 hasRelatedWork W4293069612 @default.
- W4313484997 hasRelatedWork W4312918337 @default.
- W4313484997 isParatext "false" @default.
- W4313484997 isRetracted "false" @default.
- W4313484997 workType "article" @default.