Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313485004> ?p ?o ?g. }
- W4313485004 abstract "Integrating multi-omics data for cancer subtype recognition is an important task in bioinformatics. Recently, deep learning has been applied to recognize the subtype of cancers. However, existing studies almost integrate the multi-omics data simply by concatenation as the single data and then learn a latent low-dimensional representation through a deep learning model, which did not consider the distribution differently of omics data. Moreover, these methods ignore the relationship of samples. To tackle these problems, we proposed SADLN: A self-attention based deep learning network of integrating multi-omics data for cancer subtype recognition. SADLN combined encoder, self-attention, decoder, and discriminator into a unified framework, which can not only integrate multi-omics data but also adaptively model the sample’s relationship for learning an accurately latent low-dimensional representation. With the integrated representation learned from the network, SADLN used Gaussian Mixture Model to identify cancer subtypes. Experiments on ten cancer datasets of TCGA demonstrated the advantages of SADLN compared to ten methods. The Self-Attention Based Deep Learning Network (SADLN) is an effective method of integrating multi-omics data for cancer subtype recognition." @default.
- W4313485004 created "2023-01-06" @default.
- W4313485004 creator A5002331882 @default.
- W4313485004 creator A5008333846 @default.
- W4313485004 creator A5010479652 @default.
- W4313485004 creator A5041026989 @default.
- W4313485004 creator A5047498651 @default.
- W4313485004 creator A5080954495 @default.
- W4313485004 creator A5091154483 @default.
- W4313485004 date "2023-01-04" @default.
- W4313485004 modified "2023-10-14" @default.
- W4313485004 title "SADLN: Self-attention based deep learning network of integrating multi-omics data for cancer subtype recognition" @default.
- W4313485004 cites W1672581350 @default.
- W4313485004 cites W1950829641 @default.
- W4313485004 cites W1987219048 @default.
- W4313485004 cites W2008929650 @default.
- W4313485004 cites W2041440766 @default.
- W4313485004 cites W2051216358 @default.
- W4313485004 cites W2078370799 @default.
- W4313485004 cites W2105717378 @default.
- W4313485004 cites W2130854041 @default.
- W4313485004 cites W2132619562 @default.
- W4313485004 cites W2161289668 @default.
- W4313485004 cites W2180481128 @default.
- W4313485004 cites W2248620004 @default.
- W4313485004 cites W2335012284 @default.
- W4313485004 cites W2611138580 @default.
- W4313485004 cites W2745658163 @default.
- W4313485004 cites W2748710555 @default.
- W4313485004 cites W2763670669 @default.
- W4313485004 cites W2765654979 @default.
- W4313485004 cites W2769387903 @default.
- W4313485004 cites W2795441251 @default.
- W4313485004 cites W2796153844 @default.
- W4313485004 cites W2803934991 @default.
- W4313485004 cites W2884724578 @default.
- W4313485004 cites W2889646458 @default.
- W4313485004 cites W2945139835 @default.
- W4313485004 cites W2947489533 @default.
- W4313485004 cites W2950878899 @default.
- W4313485004 cites W2955502047 @default.
- W4313485004 cites W2963881378 @default.
- W4313485004 cites W2963925437 @default.
- W4313485004 cites W2972991629 @default.
- W4313485004 cites W2977990673 @default.
- W4313485004 cites W2981441441 @default.
- W4313485004 cites W2981690252 @default.
- W4313485004 cites W2985613304 @default.
- W4313485004 cites W2994638938 @default.
- W4313485004 cites W2996227376 @default.
- W4313485004 cites W2998209348 @default.
- W4313485004 cites W2999417355 @default.
- W4313485004 cites W3038260279 @default.
- W4313485004 cites W3040172617 @default.
- W4313485004 cites W3042309388 @default.
- W4313485004 cites W3085172652 @default.
- W4313485004 cites W3085429933 @default.
- W4313485004 cites W3085827609 @default.
- W4313485004 cites W3092163864 @default.
- W4313485004 cites W3100788068 @default.
- W4313485004 cites W3110329345 @default.
- W4313485004 cites W3126201013 @default.
- W4313485004 cites W3130672622 @default.
- W4313485004 cites W3157243618 @default.
- W4313485004 cites W3159101980 @default.
- W4313485004 cites W3163443268 @default.
- W4313485004 cites W3165198165 @default.
- W4313485004 cites W3170986249 @default.
- W4313485004 cites W3173875945 @default.
- W4313485004 cites W3177403447 @default.
- W4313485004 cites W3183293512 @default.
- W4313485004 cites W3185245858 @default.
- W4313485004 cites W3208787103 @default.
- W4313485004 cites W3212760103 @default.
- W4313485004 cites W4200522058 @default.
- W4313485004 cites W4223962896 @default.
- W4313485004 cites W4241727697 @default.
- W4313485004 cites W4252676770 @default.
- W4313485004 cites W4283656728 @default.
- W4313485004 doi "https://doi.org/10.3389/fgene.2022.1032768" @default.
- W4313485004 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36685873" @default.
- W4313485004 hasPublicationYear "2023" @default.
- W4313485004 type Work @default.
- W4313485004 citedByCount "0" @default.
- W4313485004 crossrefType "journal-article" @default.
- W4313485004 hasAuthorship W4313485004A5002331882 @default.
- W4313485004 hasAuthorship W4313485004A5008333846 @default.
- W4313485004 hasAuthorship W4313485004A5010479652 @default.
- W4313485004 hasAuthorship W4313485004A5041026989 @default.
- W4313485004 hasAuthorship W4313485004A5047498651 @default.
- W4313485004 hasAuthorship W4313485004A5080954495 @default.
- W4313485004 hasAuthorship W4313485004A5091154483 @default.
- W4313485004 hasBestOaLocation W43134850041 @default.
- W4313485004 hasConcept C108583219 @default.
- W4313485004 hasConcept C114614502 @default.
- W4313485004 hasConcept C119857082 @default.
- W4313485004 hasConcept C154945302 @default.
- W4313485004 hasConcept C157585117 @default.
- W4313485004 hasConcept C2779803651 @default.
- W4313485004 hasConcept C33923547 @default.