Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313487564> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4313487564 endingPage "120599" @default.
- W4313487564 startingPage "120599" @default.
- W4313487564 abstract "The economy-oriented automated hybrid eclectic vehicles (HEV) provide great potential to save energy by optimizing both driving behaviors and power distribution. Recent advances in the ecological car following issue of HEV focus on fusing adaptive cruise control (ACC) and energy management system (EMS) by collaborative optimization. However, series control frameworks ACC+EMS breaks the internal coupling relation between motion control and energy distribution, leading to the natural limitation of its optimization. On the opposite, integrated ACC-EMS promises energy-saving improvement but brings complex optimization problems with multi-scale objectives and large exploration space. The huge computation load restricts the online application of ACC-EMS. To address these problems, a hierarchical reinforcement learning based ACC-EMS strategy is proposed with a hierarchical policy and non-hierarchical execution. The upper layer learns to plan state-of-charge and time-headway trajectories, while the low layer policy learns to achieve the expected goals by outputting control variables executed by the host vehicle. The proposed ACC-EMS strategy were self-learning by interaction in car-following scenario constructed with GPS data on I-880 highway. Comprehensive simulations show the proposed strategy has significantly improved the training speed and stability, compared to the offline global optimum, achieving the energy consumption difference of less than 3% and computational load of less than 600 times." @default.
- W4313487564 created "2023-01-06" @default.
- W4313487564 creator A5073424108 @default.
- W4313487564 creator A5079942913 @default.
- W4313487564 creator A5083652396 @default.
- W4313487564 creator A5085784813 @default.
- W4313487564 creator A5089545263 @default.
- W4313487564 date "2023-03-01" @default.
- W4313487564 modified "2023-10-12" @default.
- W4313487564 title "Hierarchical reinforcement learning based energy management strategy of plug-in hybrid electric vehicle for ecological car-following process" @default.
- W4313487564 cites W1985986451 @default.
- W4313487564 cites W2027614944 @default.
- W4313487564 cites W2043765345 @default.
- W4313487564 cites W2046366584 @default.
- W4313487564 cites W2068400211 @default.
- W4313487564 cites W2094387729 @default.
- W4313487564 cites W2120121765 @default.
- W4313487564 cites W2220637980 @default.
- W4313487564 cites W2295765097 @default.
- W4313487564 cites W2337632932 @default.
- W4313487564 cites W2466636338 @default.
- W4313487564 cites W2569281615 @default.
- W4313487564 cites W2574459701 @default.
- W4313487564 cites W2787664378 @default.
- W4313487564 cites W2896661206 @default.
- W4313487564 cites W2900901991 @default.
- W4313487564 cites W2907696838 @default.
- W4313487564 cites W2935913115 @default.
- W4313487564 cites W3000284772 @default.
- W4313487564 cites W3008350097 @default.
- W4313487564 cites W3011281030 @default.
- W4313487564 cites W3019345598 @default.
- W4313487564 doi "https://doi.org/10.1016/j.apenergy.2022.120599" @default.
- W4313487564 hasPublicationYear "2023" @default.
- W4313487564 type Work @default.
- W4313487564 citedByCount "4" @default.
- W4313487564 countsByYear W43134875642023 @default.
- W4313487564 crossrefType "journal-article" @default.
- W4313487564 hasAuthorship W4313487564A5073424108 @default.
- W4313487564 hasAuthorship W4313487564A5079942913 @default.
- W4313487564 hasAuthorship W4313487564A5083652396 @default.
- W4313487564 hasAuthorship W4313487564A5085784813 @default.
- W4313487564 hasAuthorship W4313487564A5089545263 @default.
- W4313487564 hasConcept C105795698 @default.
- W4313487564 hasConcept C111919701 @default.
- W4313487564 hasConcept C119599485 @default.
- W4313487564 hasConcept C127413603 @default.
- W4313487564 hasConcept C154945302 @default.
- W4313487564 hasConcept C186370098 @default.
- W4313487564 hasConcept C2780165032 @default.
- W4313487564 hasConcept C33923547 @default.
- W4313487564 hasConcept C41008148 @default.
- W4313487564 hasConcept C44154836 @default.
- W4313487564 hasConcept C7817414 @default.
- W4313487564 hasConcept C97541855 @default.
- W4313487564 hasConcept C98045186 @default.
- W4313487564 hasConceptScore W4313487564C105795698 @default.
- W4313487564 hasConceptScore W4313487564C111919701 @default.
- W4313487564 hasConceptScore W4313487564C119599485 @default.
- W4313487564 hasConceptScore W4313487564C127413603 @default.
- W4313487564 hasConceptScore W4313487564C154945302 @default.
- W4313487564 hasConceptScore W4313487564C186370098 @default.
- W4313487564 hasConceptScore W4313487564C2780165032 @default.
- W4313487564 hasConceptScore W4313487564C33923547 @default.
- W4313487564 hasConceptScore W4313487564C41008148 @default.
- W4313487564 hasConceptScore W4313487564C44154836 @default.
- W4313487564 hasConceptScore W4313487564C7817414 @default.
- W4313487564 hasConceptScore W4313487564C97541855 @default.
- W4313487564 hasConceptScore W4313487564C98045186 @default.
- W4313487564 hasLocation W43134875641 @default.
- W4313487564 hasOpenAccess W4313487564 @default.
- W4313487564 hasPrimaryLocation W43134875641 @default.
- W4313487564 hasRelatedWork W260766989 @default.
- W4313487564 hasRelatedWork W2959276766 @default.
- W4313487564 hasRelatedWork W3074294383 @default.
- W4313487564 hasRelatedWork W3097466332 @default.
- W4313487564 hasRelatedWork W3111983280 @default.
- W4313487564 hasRelatedWork W3139193008 @default.
- W4313487564 hasRelatedWork W3164468573 @default.
- W4313487564 hasRelatedWork W4206669594 @default.
- W4313487564 hasRelatedWork W4239558933 @default.
- W4313487564 hasRelatedWork W4295941380 @default.
- W4313487564 hasVolume "333" @default.
- W4313487564 isParatext "false" @default.
- W4313487564 isRetracted "false" @default.
- W4313487564 workType "article" @default.