Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313487640> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4313487640 abstract "Single-pixel imaging uses a single-pixel detector to capture all photons emitted from the two-dimensional scene, and then calculates and reconstructs the two-dimensional target scene image from the one-dimensional measurement data through single-pixel reconstruction methods (such as linear superposition, compressed sensing or deep learning) based on the one-dimensional acquisition data and the corresponding illumination coding. Compared with traditional cameras, single-pixel imaging has the advantages of high signal-to-noise ratio and wide spectrum. Due to these advantages, single-pixel imaging has been widely used in multispectral imaging. However, the traditional single-pixel image reconstruction methods have some disadvantages, such as low resolution, huge time consuming and poor reconstruction quality. In this paper, we propose a single-pixel image reconstruction method based on neural network. Compared with the traditional single-pixel image reconstruction method, this method has better reconstruction quality at lower sampling rate. Specifically, in this model, we first use a small optimized-patterns to simulate a single-pixel camera to sample the image to obtain the measured values, and then extract multi-channel high-dimensional semantic features from the sampled values through a high-dimensional semantic feature extraction network. Then, the multi-scale residual network module is used to construct the feature pyramid up-sampling module to up sample the high-dimensional semantic features. In the training process, the network parameters and pattern are jointly optimized to obtain the optimal network model and pattern. With the help of large-scale and pre-training, our reconstructed image has higher resolution, shorter reconstruction time and better reconstruction quality." @default.
- W4313487640 created "2023-01-06" @default.
- W4313487640 creator A5046798323 @default.
- W4313487640 creator A5075965476 @default.
- W4313487640 creator A5090932389 @default.
- W4313487640 date "2023-01-04" @default.
- W4313487640 modified "2023-09-26" @default.
- W4313487640 title "Large-scale single-pixel imaging via deep learning" @default.
- W4313487640 cites W1500149156 @default.
- W4313487640 cites W1536680647 @default.
- W4313487640 cites W1979479847 @default.
- W4313487640 cites W2007103423 @default.
- W4313487640 cites W2007580162 @default.
- W4313487640 cites W2028976653 @default.
- W4313487640 cites W2069089470 @default.
- W4313487640 cites W2085899807 @default.
- W4313487640 cites W2130120519 @default.
- W4313487640 cites W2133665775 @default.
- W4313487640 cites W2145096794 @default.
- W4313487640 cites W2194775991 @default.
- W4313487640 cites W2273561594 @default.
- W4313487640 cites W2504837581 @default.
- W4313487640 cites W2587649600 @default.
- W4313487640 cites W2772609332 @default.
- W4313487640 cites W2901589656 @default.
- W4313487640 cites W2963676935 @default.
- W4313487640 cites W2975745426 @default.
- W4313487640 cites W3122024330 @default.
- W4313487640 cites W3125735862 @default.
- W4313487640 doi "https://doi.org/10.1117/12.2643014" @default.
- W4313487640 hasPublicationYear "2023" @default.
- W4313487640 type Work @default.
- W4313487640 citedByCount "0" @default.
- W4313487640 crossrefType "proceedings-article" @default.
- W4313487640 hasAuthorship W4313487640A5046798323 @default.
- W4313487640 hasAuthorship W4313487640A5075965476 @default.
- W4313487640 hasAuthorship W4313487640A5090932389 @default.
- W4313487640 hasConcept C138885662 @default.
- W4313487640 hasConcept C141379421 @default.
- W4313487640 hasConcept C153180895 @default.
- W4313487640 hasConcept C154945302 @default.
- W4313487640 hasConcept C160633673 @default.
- W4313487640 hasConcept C173163844 @default.
- W4313487640 hasConcept C205372480 @default.
- W4313487640 hasConcept C2776401178 @default.
- W4313487640 hasConcept C31972630 @default.
- W4313487640 hasConcept C41008148 @default.
- W4313487640 hasConcept C41895202 @default.
- W4313487640 hasConcept C52622490 @default.
- W4313487640 hasConceptScore W4313487640C138885662 @default.
- W4313487640 hasConceptScore W4313487640C141379421 @default.
- W4313487640 hasConceptScore W4313487640C153180895 @default.
- W4313487640 hasConceptScore W4313487640C154945302 @default.
- W4313487640 hasConceptScore W4313487640C160633673 @default.
- W4313487640 hasConceptScore W4313487640C173163844 @default.
- W4313487640 hasConceptScore W4313487640C205372480 @default.
- W4313487640 hasConceptScore W4313487640C2776401178 @default.
- W4313487640 hasConceptScore W4313487640C31972630 @default.
- W4313487640 hasConceptScore W4313487640C41008148 @default.
- W4313487640 hasConceptScore W4313487640C41895202 @default.
- W4313487640 hasConceptScore W4313487640C52622490 @default.
- W4313487640 hasLocation W43134876401 @default.
- W4313487640 hasOpenAccess W4313487640 @default.
- W4313487640 hasPrimaryLocation W43134876401 @default.
- W4313487640 hasRelatedWork W1604511055 @default.
- W4313487640 hasRelatedWork W2016461833 @default.
- W4313487640 hasRelatedWork W2080860377 @default.
- W4313487640 hasRelatedWork W2090093270 @default.
- W4313487640 hasRelatedWork W2164918837 @default.
- W4313487640 hasRelatedWork W2382607599 @default.
- W4313487640 hasRelatedWork W2534909612 @default.
- W4313487640 hasRelatedWork W3093404388 @default.
- W4313487640 hasRelatedWork W3197541072 @default.
- W4313487640 hasRelatedWork W4213228110 @default.
- W4313487640 isParatext "false" @default.
- W4313487640 isRetracted "false" @default.
- W4313487640 workType "article" @default.