Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313487856> ?p ?o ?g. }
- W4313487856 endingPage "293" @default.
- W4313487856 startingPage "282" @default.
- W4313487856 abstract "Motorcycle accident studies usually rely upon data collected from road accidents collected through questionnaire surveys/police reports including characteristics of motorcycle riders and contextual data such as road environment. The present study utilizes big data, in the form of vehicle trajectory patterns collected through GPS, coupled with self-reported road accident information along with motorcycle rider characteristics to predict the likelihood of involvement of a motorcyclist in an accident. Random Forest-based machine learning algorithm is employed by taking inputs based on a variety of features derived from trajectory data. These features are mobility-based features, acceleration event-based features, aggressive overtaking event-based features and motorcyclists socio-economic features. Additionally, the relative importance of features is also determined which shows that aggressive overtaking event-based features have more impact on motorcycle accidents as compared to other categories of features. The developed model is useful in identifying risky motorcyclists and implementing safety measures focused towards them." @default.
- W4313487856 created "2023-01-06" @default.
- W4313487856 creator A5008621920 @default.
- W4313487856 creator A5021114509 @default.
- W4313487856 creator A5040140734 @default.
- W4313487856 creator A5069380187 @default.
- W4313487856 creator A5075567278 @default.
- W4313487856 date "2023-01-04" @default.
- W4313487856 modified "2023-10-17" @default.
- W4313487856 title "Random forest models for motorcycle accident prediction using naturalistic driving based big data" @default.
- W4313487856 cites W1584308190 @default.
- W4313487856 cites W1968667535 @default.
- W4313487856 cites W1997074858 @default.
- W4313487856 cites W1999616870 @default.
- W4313487856 cites W2019860663 @default.
- W4313487856 cites W2025254312 @default.
- W4313487856 cites W2040418644 @default.
- W4313487856 cites W2042082479 @default.
- W4313487856 cites W2056508237 @default.
- W4313487856 cites W2057483198 @default.
- W4313487856 cites W2059837966 @default.
- W4313487856 cites W2075748903 @default.
- W4313487856 cites W2088645710 @default.
- W4313487856 cites W2089308512 @default.
- W4313487856 cites W2106100548 @default.
- W4313487856 cites W2128761559 @default.
- W4313487856 cites W2130168613 @default.
- W4313487856 cites W2135963782 @default.
- W4313487856 cites W2148143831 @default.
- W4313487856 cites W2342616019 @default.
- W4313487856 cites W2464901545 @default.
- W4313487856 cites W2767362063 @default.
- W4313487856 cites W2769188397 @default.
- W4313487856 cites W2887473274 @default.
- W4313487856 cites W2889617671 @default.
- W4313487856 cites W2901672822 @default.
- W4313487856 cites W2907431906 @default.
- W4313487856 cites W2908295285 @default.
- W4313487856 cites W2917295966 @default.
- W4313487856 cites W2923294910 @default.
- W4313487856 cites W2947982105 @default.
- W4313487856 cites W2952790508 @default.
- W4313487856 cites W2954561089 @default.
- W4313487856 cites W2989220192 @default.
- W4313487856 cites W2998984843 @default.
- W4313487856 cites W2999578199 @default.
- W4313487856 cites W3008879069 @default.
- W4313487856 cites W3012051065 @default.
- W4313487856 cites W3032842701 @default.
- W4313487856 cites W3047846137 @default.
- W4313487856 cites W3092359561 @default.
- W4313487856 cites W3111588349 @default.
- W4313487856 cites W3121758619 @default.
- W4313487856 cites W3133995936 @default.
- W4313487856 cites W3176680235 @default.
- W4313487856 cites W4210388298 @default.
- W4313487856 doi "https://doi.org/10.1080/17457300.2022.2164310" @default.
- W4313487856 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36597803" @default.
- W4313487856 hasPublicationYear "2023" @default.
- W4313487856 type Work @default.
- W4313487856 citedByCount "2" @default.
- W4313487856 countsByYear W43134878562023 @default.
- W4313487856 crossrefType "journal-article" @default.
- W4313487856 hasAuthorship W4313487856A5008621920 @default.
- W4313487856 hasAuthorship W4313487856A5021114509 @default.
- W4313487856 hasAuthorship W4313487856A5040140734 @default.
- W4313487856 hasAuthorship W4313487856A5069380187 @default.
- W4313487856 hasAuthorship W4313487856A5075567278 @default.
- W4313487856 hasConcept C119857082 @default.
- W4313487856 hasConcept C121332964 @default.
- W4313487856 hasConcept C121704057 @default.
- W4313487856 hasConcept C124101348 @default.
- W4313487856 hasConcept C127413603 @default.
- W4313487856 hasConcept C1276947 @default.
- W4313487856 hasConcept C13662910 @default.
- W4313487856 hasConcept C169258074 @default.
- W4313487856 hasConcept C22212356 @default.
- W4313487856 hasConcept C2778448659 @default.
- W4313487856 hasConcept C2779662365 @default.
- W4313487856 hasConcept C3017944768 @default.
- W4313487856 hasConcept C38652104 @default.
- W4313487856 hasConcept C41008148 @default.
- W4313487856 hasConcept C545542383 @default.
- W4313487856 hasConcept C60229501 @default.
- W4313487856 hasConcept C62520636 @default.
- W4313487856 hasConcept C71924100 @default.
- W4313487856 hasConcept C75684735 @default.
- W4313487856 hasConcept C76155785 @default.
- W4313487856 hasConceptScore W4313487856C119857082 @default.
- W4313487856 hasConceptScore W4313487856C121332964 @default.
- W4313487856 hasConceptScore W4313487856C121704057 @default.
- W4313487856 hasConceptScore W4313487856C124101348 @default.
- W4313487856 hasConceptScore W4313487856C127413603 @default.
- W4313487856 hasConceptScore W4313487856C1276947 @default.
- W4313487856 hasConceptScore W4313487856C13662910 @default.
- W4313487856 hasConceptScore W4313487856C169258074 @default.
- W4313487856 hasConceptScore W4313487856C22212356 @default.
- W4313487856 hasConceptScore W4313487856C2778448659 @default.