Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313488534> ?p ?o ?g. }
- W4313488534 abstract "Region of interest (ROI) extraction is a fundamental step in analyzing metabolomic datasets acquired by liquid chromatography-mass spectrometry (LC-MS). However, noises and backgrounds in LC-MS data often affect the quality of extracted ROIs. Therefore, developing effective ROI evaluation algorithms is necessary to eliminate false positives meanwhile keep the false-negative rate as low as possible. In this study, a deep fused filter of ROIs (dffROI) was proposed to improve the accuracy of ROI extraction by combining the handcrafted evaluation metrics with convolutional neural network (CNN)-learned representations. To evaluate the performance of dffROI, dffROI was compared with peakonly (CNN-learned representation) and five handcrafted metrics on three LC-MS datasets and a gas chromatography-mass spectrometry (GC-MS) dataset. Results show that dffROI can achieve higher accuracy, better true-positive rate, and lower false-positive rate. Its accuracy, true-positive rate, and false-positive rate are 0.9841, 0.9869, and 0.0186 on the test set, respectively. The classification error rate of dffROI (1.59%) is significantly reduced compared with peakonly (2.73%). The model-agnostic feature importance demonstrates the necessity of fusing handcrafted evaluation metrics with the convolutional neural network representations. dffROI is an automatic, robust, and universal method for ROI filtering by virtue of information fusion and end-to-end learning. It is implemented in Python programming language and open-sourced at https://github.com/zhanghailiangcsu/dffROI under BSD License. Furthermore, it has been integrated into the KPIC2 framework previously proposed by our group to facilitate real metabolomic LC-MS dataset analysis." @default.
- W4313488534 created "2023-01-06" @default.
- W4313488534 creator A5004690469 @default.
- W4313488534 creator A5005164557 @default.
- W4313488534 creator A5013932274 @default.
- W4313488534 creator A5030452900 @default.
- W4313488534 creator A5033632697 @default.
- W4313488534 creator A5040316611 @default.
- W4313488534 creator A5071074675 @default.
- W4313488534 creator A5078359417 @default.
- W4313488534 creator A5078767303 @default.
- W4313488534 creator A5082117229 @default.
- W4313488534 date "2023-01-04" @default.
- W4313488534 modified "2023-10-18" @default.
- W4313488534 title "Fusion of Quality Evaluation Metrics and Convolutional Neural Network Representations for ROI Filtering in LC–MS" @default.
- W4313488534 cites W1968430975 @default.
- W4313488534 cites W1971606140 @default.
- W4313488534 cites W1974333703 @default.
- W4313488534 cites W1989299822 @default.
- W4313488534 cites W1990328488 @default.
- W4313488534 cites W2014081012 @default.
- W4313488534 cites W2017979364 @default.
- W4313488534 cites W2032555174 @default.
- W4313488534 cites W2100200067 @default.
- W4313488534 cites W2152579092 @default.
- W4313488534 cites W2168590651 @default.
- W4313488534 cites W2280175079 @default.
- W4313488534 cites W2324021033 @default.
- W4313488534 cites W2326761212 @default.
- W4313488534 cites W2626553651 @default.
- W4313488534 cites W2740838806 @default.
- W4313488534 cites W2761141956 @default.
- W4313488534 cites W2802842185 @default.
- W4313488534 cites W2950625953 @default.
- W4313488534 cites W2969808707 @default.
- W4313488534 cites W2971666515 @default.
- W4313488534 cites W2994716258 @default.
- W4313488534 cites W3034396232 @default.
- W4313488534 cites W3048961662 @default.
- W4313488534 cites W3089891425 @default.
- W4313488534 cites W3093642374 @default.
- W4313488534 cites W3100130648 @default.
- W4313488534 cites W3118642024 @default.
- W4313488534 cites W3197125403 @default.
- W4313488534 cites W3197874870 @default.
- W4313488534 cites W3198140534 @default.
- W4313488534 cites W3210740626 @default.
- W4313488534 cites W4220783237 @default.
- W4313488534 doi "https://doi.org/10.1021/acs.analchem.2c01398" @default.
- W4313488534 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36597722" @default.
- W4313488534 hasPublicationYear "2023" @default.
- W4313488534 type Work @default.
- W4313488534 citedByCount "0" @default.
- W4313488534 crossrefType "journal-article" @default.
- W4313488534 hasAuthorship W4313488534A5004690469 @default.
- W4313488534 hasAuthorship W4313488534A5005164557 @default.
- W4313488534 hasAuthorship W4313488534A5013932274 @default.
- W4313488534 hasAuthorship W4313488534A5030452900 @default.
- W4313488534 hasAuthorship W4313488534A5033632697 @default.
- W4313488534 hasAuthorship W4313488534A5040316611 @default.
- W4313488534 hasAuthorship W4313488534A5071074675 @default.
- W4313488534 hasAuthorship W4313488534A5078359417 @default.
- W4313488534 hasAuthorship W4313488534A5078767303 @default.
- W4313488534 hasAuthorship W4313488534A5082117229 @default.
- W4313488534 hasConcept C119857082 @default.
- W4313488534 hasConcept C124101348 @default.
- W4313488534 hasConcept C153180895 @default.
- W4313488534 hasConcept C154945302 @default.
- W4313488534 hasConcept C19609008 @default.
- W4313488534 hasConcept C41008148 @default.
- W4313488534 hasConcept C64869954 @default.
- W4313488534 hasConcept C81363708 @default.
- W4313488534 hasConcept C95922358 @default.
- W4313488534 hasConceptScore W4313488534C119857082 @default.
- W4313488534 hasConceptScore W4313488534C124101348 @default.
- W4313488534 hasConceptScore W4313488534C153180895 @default.
- W4313488534 hasConceptScore W4313488534C154945302 @default.
- W4313488534 hasConceptScore W4313488534C19609008 @default.
- W4313488534 hasConceptScore W4313488534C41008148 @default.
- W4313488534 hasConceptScore W4313488534C64869954 @default.
- W4313488534 hasConceptScore W4313488534C81363708 @default.
- W4313488534 hasConceptScore W4313488534C95922358 @default.
- W4313488534 hasFunder F4320321001 @default.
- W4313488534 hasFunder F4320321514 @default.
- W4313488534 hasLocation W43134885341 @default.
- W4313488534 hasLocation W43134885342 @default.
- W4313488534 hasOpenAccess W4313488534 @default.
- W4313488534 hasPrimaryLocation W43134885341 @default.
- W4313488534 hasRelatedWork W2767651786 @default.
- W4313488534 hasRelatedWork W2912288872 @default.
- W4313488534 hasRelatedWork W3000645065 @default.
- W4313488534 hasRelatedWork W3012978760 @default.
- W4313488534 hasRelatedWork W3021430260 @default.
- W4313488534 hasRelatedWork W3027997911 @default.
- W4313488534 hasRelatedWork W3086857729 @default.
- W4313488534 hasRelatedWork W4287776258 @default.
- W4313488534 hasRelatedWork W564581980 @default.
- W4313488534 hasRelatedWork W2018359039 @default.
- W4313488534 isParatext "false" @default.
- W4313488534 isRetracted "false" @default.