Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313488596> ?p ?o ?g. }
- W4313488596 endingPage "473" @default.
- W4313488596 startingPage "459" @default.
- W4313488596 abstract "We propose a scheme for the automatic separation (i.e., clustering) of data sets composed of several nanoparticle (NP) structures by means of Machine Learning techniques. These data sets originate from atomistic simulations, such as global optimizations searches and molecular dynamics simulations, which can produce large outputs that are often difficult to inspect by hand. By combining a description of NPs based on their local atomic environment with unsupervised learning algorithms, such as K-Means and Gaussian mixture model, we are able to distinguish between different structural motifs (e.g., icosahedra, decahedra, polyicosahedra, fcc fragments, twins, and so on). We show that this method is able to improve over the results obtained previously thanks to the successful implementation of a more detailed description of NPs, especially for systems showing a large variety of structures, including disordered ones." @default.
- W4313488596 created "2023-01-06" @default.
- W4313488596 creator A5038554157 @default.
- W4313488596 creator A5048817193 @default.
- W4313488596 date "2023-01-04" @default.
- W4313488596 modified "2023-10-18" @default.
- W4313488596 title "Machine Learning Assisted Clustering of Nanoparticle Structures" @default.
- W4313488596 cites W1493454437 @default.
- W4313488596 cites W1908619978 @default.
- W4313488596 cites W1964132516 @default.
- W4313488596 cites W1987971958 @default.
- W4313488596 cites W1996588896 @default.
- W4313488596 cites W2004407811 @default.
- W4313488596 cites W2008849880 @default.
- W4313488596 cites W2012317585 @default.
- W4313488596 cites W2013797972 @default.
- W4313488596 cites W2034629208 @default.
- W4313488596 cites W2055826030 @default.
- W4313488596 cites W2059527620 @default.
- W4313488596 cites W2066384800 @default.
- W4313488596 cites W2071949631 @default.
- W4313488596 cites W2074889196 @default.
- W4313488596 cites W2078110508 @default.
- W4313488596 cites W2085487226 @default.
- W4313488596 cites W2085528403 @default.
- W4313488596 cites W2090658088 @default.
- W4313488596 cites W2094089419 @default.
- W4313488596 cites W2146462263 @default.
- W4313488596 cites W2150593711 @default.
- W4313488596 cites W2168175751 @default.
- W4313488596 cites W2290966472 @default.
- W4313488596 cites W2294798173 @default.
- W4313488596 cites W2323178299 @default.
- W4313488596 cites W2325716628 @default.
- W4313488596 cites W2550788816 @default.
- W4313488596 cites W2576121899 @default.
- W4313488596 cites W2779797049 @default.
- W4313488596 cites W2787894218 @default.
- W4313488596 cites W2955308175 @default.
- W4313488596 cites W3040145540 @default.
- W4313488596 cites W3079469717 @default.
- W4313488596 cites W3105621768 @default.
- W4313488596 cites W3161700694 @default.
- W4313488596 cites W3204845125 @default.
- W4313488596 cites W3206231912 @default.
- W4313488596 cites W4200142013 @default.
- W4313488596 cites W4210395157 @default.
- W4313488596 cites W4210471528 @default.
- W4313488596 cites W4220880267 @default.
- W4313488596 cites W4283210328 @default.
- W4313488596 cites W4292933682 @default.
- W4313488596 doi "https://doi.org/10.1021/acs.jcim.2c01203" @default.
- W4313488596 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36597194" @default.
- W4313488596 hasPublicationYear "2023" @default.
- W4313488596 type Work @default.
- W4313488596 citedByCount "4" @default.
- W4313488596 countsByYear W43134885962023 @default.
- W4313488596 crossrefType "journal-article" @default.
- W4313488596 hasAuthorship W4313488596A5038554157 @default.
- W4313488596 hasAuthorship W4313488596A5048817193 @default.
- W4313488596 hasBestOaLocation W43134885961 @default.
- W4313488596 hasConcept C119857082 @default.
- W4313488596 hasConcept C136197465 @default.
- W4313488596 hasConcept C147597530 @default.
- W4313488596 hasConcept C154945302 @default.
- W4313488596 hasConcept C155672457 @default.
- W4313488596 hasConcept C163716315 @default.
- W4313488596 hasConcept C171250308 @default.
- W4313488596 hasConcept C185592680 @default.
- W4313488596 hasConcept C192562407 @default.
- W4313488596 hasConcept C41008148 @default.
- W4313488596 hasConcept C59593255 @default.
- W4313488596 hasConcept C61224824 @default.
- W4313488596 hasConcept C73555534 @default.
- W4313488596 hasConcept C8038995 @default.
- W4313488596 hasConceptScore W4313488596C119857082 @default.
- W4313488596 hasConceptScore W4313488596C136197465 @default.
- W4313488596 hasConceptScore W4313488596C147597530 @default.
- W4313488596 hasConceptScore W4313488596C154945302 @default.
- W4313488596 hasConceptScore W4313488596C155672457 @default.
- W4313488596 hasConceptScore W4313488596C163716315 @default.
- W4313488596 hasConceptScore W4313488596C171250308 @default.
- W4313488596 hasConceptScore W4313488596C185592680 @default.
- W4313488596 hasConceptScore W4313488596C192562407 @default.
- W4313488596 hasConceptScore W4313488596C41008148 @default.
- W4313488596 hasConceptScore W4313488596C59593255 @default.
- W4313488596 hasConceptScore W4313488596C61224824 @default.
- W4313488596 hasConceptScore W4313488596C73555534 @default.
- W4313488596 hasConceptScore W4313488596C8038995 @default.
- W4313488596 hasFunder F4320322794 @default.
- W4313488596 hasIssue "2" @default.
- W4313488596 hasLocation W43134885961 @default.
- W4313488596 hasLocation W43134885962 @default.
- W4313488596 hasLocation W43134885963 @default.
- W4313488596 hasOpenAccess W4313488596 @default.
- W4313488596 hasPrimaryLocation W43134885961 @default.
- W4313488596 hasRelatedWork W3007915134 @default.
- W4313488596 hasRelatedWork W3046775127 @default.