Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313489964> ?p ?o ?g. }
- W4313489964 endingPage "103720" @default.
- W4313489964 startingPage "103720" @default.
- W4313489964 abstract "The current industrial scenario has witnessed the application of several artificial intelligence-based technologies for mining and processing IoMT-based big data. An emerging distributed machine learning paradigm, Federated Learning (FL), has been widely applied in IoMT-based systems as a measure to overcome the issues associated with incorporating AI into such lightweight distributed computing systems while tackling privacy issues as well. However, extensive research has identified that classical FL is still prone to privacy threats due to data leakage and the chances of adversarial attacks during gradient transfer operations. Inspired by these issues, we propose a privacy-preserving framework (Fed_select) that ensures user anonymity in IoMT-based environments for big data analysis under the FL scheme. Fed_Select utilizes alternative minimization to limit gradients and participants in system training to decrease points of system vulnerability. The framework works on an edge computing-based architecture which ensures user anonymity via the employment of hybrid encryption techniques along with added benefits of load reduction at the central server. Also, a Laplacian noise-based differential privacy is employed on the shared attributes for security enhancement that adds confidentiality to the transferred data even during adversarial scenarios. Experimental results on standard datasets showcase that the change in the volume of gradients shared and the number of participants is not proportional to the variation in various system performance parameters. Specifically, an idealistic range of client and gradient-sharing fractions along with the appropriate value of noise for differential privacy implementation is determined. Additionally, we analyze the system from a security perspective as well as compare it with other schemes." @default.
- W4313489964 created "2023-01-06" @default.
- W4313489964 creator A5064255183 @default.
- W4313489964 creator A5079252728 @default.
- W4313489964 creator A5083804893 @default.
- W4313489964 date "2023-08-01" @default.
- W4313489964 modified "2023-10-07" @default.
- W4313489964 title "Privacy preserving Federated Learning framework for IoMT based big data analysis using edge computing" @default.
- W4313489964 cites W2416799949 @default.
- W4313489964 cites W2473418344 @default.
- W4313489964 cites W2594685110 @default.
- W4313489964 cites W2610491778 @default.
- W4313489964 cites W2785446263 @default.
- W4313489964 cites W2809628703 @default.
- W4313489964 cites W2888878287 @default.
- W4313489964 cites W2889449516 @default.
- W4313489964 cites W2891400669 @default.
- W4313489964 cites W2900594532 @default.
- W4313489964 cites W2915771847 @default.
- W4313489964 cites W2920323654 @default.
- W4313489964 cites W2923148980 @default.
- W4313489964 cites W2942231644 @default.
- W4313489964 cites W2945326446 @default.
- W4313489964 cites W2951578881 @default.
- W4313489964 cites W2962804345 @default.
- W4313489964 cites W2963318081 @default.
- W4313489964 cites W2969883781 @default.
- W4313489964 cites W2970606380 @default.
- W4313489964 cites W2997357271 @default.
- W4313489964 cites W3001299093 @default.
- W4313489964 cites W3003710153 @default.
- W4313489964 cites W3006191871 @default.
- W4313489964 cites W3013124972 @default.
- W4313489964 cites W3014031346 @default.
- W4313489964 cites W3016632787 @default.
- W4313489964 cites W3023596111 @default.
- W4313489964 cites W3025787433 @default.
- W4313489964 cites W3045674654 @default.
- W4313489964 cites W3047027698 @default.
- W4313489964 cites W3084128899 @default.
- W4313489964 cites W3091068973 @default.
- W4313489964 cites W3101073882 @default.
- W4313489964 cites W3103802018 @default.
- W4313489964 cites W3111897001 @default.
- W4313489964 cites W3113315534 @default.
- W4313489964 cites W3119097278 @default.
- W4313489964 cites W3119595909 @default.
- W4313489964 cites W3121442875 @default.
- W4313489964 cites W3124286771 @default.
- W4313489964 cites W3127717643 @default.
- W4313489964 cites W3156226702 @default.
- W4313489964 cites W3161133901 @default.
- W4313489964 cites W3163893137 @default.
- W4313489964 cites W3180608480 @default.
- W4313489964 cites W3183184422 @default.
- W4313489964 cites W3185987447 @default.
- W4313489964 cites W3191782051 @default.
- W4313489964 cites W3193254256 @default.
- W4313489964 cites W3203400980 @default.
- W4313489964 cites W3203898451 @default.
- W4313489964 cites W4210508597 @default.
- W4313489964 cites W4224079313 @default.
- W4313489964 doi "https://doi.org/10.1016/j.csi.2023.103720" @default.
- W4313489964 hasPublicationYear "2023" @default.
- W4313489964 type Work @default.
- W4313489964 citedByCount "9" @default.
- W4313489964 countsByYear W43134899642023 @default.
- W4313489964 crossrefType "journal-article" @default.
- W4313489964 hasAuthorship W4313489964A5064255183 @default.
- W4313489964 hasAuthorship W4313489964A5079252728 @default.
- W4313489964 hasAuthorship W4313489964A5083804893 @default.
- W4313489964 hasConcept C119857082 @default.
- W4313489964 hasConcept C120314980 @default.
- W4313489964 hasConcept C123201435 @default.
- W4313489964 hasConcept C124101348 @default.
- W4313489964 hasConcept C148730421 @default.
- W4313489964 hasConcept C154945302 @default.
- W4313489964 hasConcept C178005623 @default.
- W4313489964 hasConcept C23130292 @default.
- W4313489964 hasConcept C38652104 @default.
- W4313489964 hasConcept C41008148 @default.
- W4313489964 hasConcept C75684735 @default.
- W4313489964 hasConceptScore W4313489964C119857082 @default.
- W4313489964 hasConceptScore W4313489964C120314980 @default.
- W4313489964 hasConceptScore W4313489964C123201435 @default.
- W4313489964 hasConceptScore W4313489964C124101348 @default.
- W4313489964 hasConceptScore W4313489964C148730421 @default.
- W4313489964 hasConceptScore W4313489964C154945302 @default.
- W4313489964 hasConceptScore W4313489964C178005623 @default.
- W4313489964 hasConceptScore W4313489964C23130292 @default.
- W4313489964 hasConceptScore W4313489964C38652104 @default.
- W4313489964 hasConceptScore W4313489964C41008148 @default.
- W4313489964 hasConceptScore W4313489964C75684735 @default.
- W4313489964 hasLocation W43134899641 @default.
- W4313489964 hasOpenAccess W4313489964 @default.
- W4313489964 hasPrimaryLocation W43134899641 @default.
- W4313489964 hasRelatedWork W2005558540 @default.
- W4313489964 hasRelatedWork W2158037536 @default.