Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313491463> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4313491463 endingPage "1256" @default.
- W4313491463 startingPage "1241" @default.
- W4313491463 abstract "The software engineering technique makes it possible to create high-quality software. One of the most significant qualities of good software is that it is devoid of bugs. One of the most time-consuming and costly software procedures is finding and fixing bugs. Although it is impossible to eradicate all bugs, it is feasible to reduce the number of bugs and their negative effects. To broaden the scope of bug prediction techniques and increase software quality, numerous causes of software problems must be identified, and successful bug prediction models must be implemented. This study employs a hybrid of Faster Convolution Neural Network and the Moth Flame Optimization (MFO) algorithm to forecast the number of bugs in software based on the program data itself, such as the line quantity in codes, methods characteristics, and other essential software aspects. Here, the MFO method is used to train the neural network to identify optimal weights. The proposed MFO-FCNN technique is compared with existing methods such as AdaBoost (AB), Random Forest (RF), K-Nearest Neighbour (KNN), K-Means Clustering (KMC), Support Vector Machine (SVM) and Bagging Classifier (BC) are examples of machine learning (ML) techniques. The assessment method revealed that machine learning techniques may be employed successfully and through a high level of accuracy. The obtained data revealed that the proposed strategy outperforms the traditional approach." @default.
- W4313491463 created "2023-01-06" @default.
- W4313491463 creator A5047368980 @default.
- W4313491463 creator A5059161846 @default.
- W4313491463 creator A5074016320 @default.
- W4313491463 date "2023-01-01" @default.
- W4313491463 modified "2023-10-06" @default.
- W4313491463 title "Moth Flame Optimization Based FCNN for Prediction of Bugs in Software" @default.
- W4313491463 cites W2127623179 @default.
- W4313491463 cites W2787986668 @default.
- W4313491463 cites W3002124246 @default.
- W4313491463 cites W3011028208 @default.
- W4313491463 cites W3105005311 @default.
- W4313491463 cites W3165943219 @default.
- W4313491463 cites W883434633 @default.
- W4313491463 doi "https://doi.org/10.32604/iasc.2023.029678" @default.
- W4313491463 hasPublicationYear "2023" @default.
- W4313491463 type Work @default.
- W4313491463 citedByCount "0" @default.
- W4313491463 crossrefType "journal-article" @default.
- W4313491463 hasAuthorship W4313491463A5047368980 @default.
- W4313491463 hasAuthorship W4313491463A5059161846 @default.
- W4313491463 hasAuthorship W4313491463A5074016320 @default.
- W4313491463 hasBestOaLocation W43134914631 @default.
- W4313491463 hasConcept C1009929 @default.
- W4313491463 hasConcept C117447612 @default.
- W4313491463 hasConcept C119857082 @default.
- W4313491463 hasConcept C12267149 @default.
- W4313491463 hasConcept C124101348 @default.
- W4313491463 hasConcept C154945302 @default.
- W4313491463 hasConcept C169258074 @default.
- W4313491463 hasConcept C199360897 @default.
- W4313491463 hasConcept C2777904410 @default.
- W4313491463 hasConcept C41008148 @default.
- W4313491463 hasConcept C50644808 @default.
- W4313491463 hasConcept C529173508 @default.
- W4313491463 hasConcept C95623464 @default.
- W4313491463 hasConceptScore W4313491463C1009929 @default.
- W4313491463 hasConceptScore W4313491463C117447612 @default.
- W4313491463 hasConceptScore W4313491463C119857082 @default.
- W4313491463 hasConceptScore W4313491463C12267149 @default.
- W4313491463 hasConceptScore W4313491463C124101348 @default.
- W4313491463 hasConceptScore W4313491463C154945302 @default.
- W4313491463 hasConceptScore W4313491463C169258074 @default.
- W4313491463 hasConceptScore W4313491463C199360897 @default.
- W4313491463 hasConceptScore W4313491463C2777904410 @default.
- W4313491463 hasConceptScore W4313491463C41008148 @default.
- W4313491463 hasConceptScore W4313491463C50644808 @default.
- W4313491463 hasConceptScore W4313491463C529173508 @default.
- W4313491463 hasConceptScore W4313491463C95623464 @default.
- W4313491463 hasIssue "2" @default.
- W4313491463 hasLocation W43134914631 @default.
- W4313491463 hasOpenAccess W4313491463 @default.
- W4313491463 hasPrimaryLocation W43134914631 @default.
- W4313491463 hasRelatedWork W2985924212 @default.
- W4313491463 hasRelatedWork W3006057552 @default.
- W4313491463 hasRelatedWork W3195168932 @default.
- W4313491463 hasRelatedWork W3195610867 @default.
- W4313491463 hasRelatedWork W4312623605 @default.
- W4313491463 hasRelatedWork W4321636153 @default.
- W4313491463 hasRelatedWork W4327511089 @default.
- W4313491463 hasRelatedWork W4377964522 @default.
- W4313491463 hasRelatedWork W4381414210 @default.
- W4313491463 hasRelatedWork W4385481849 @default.
- W4313491463 hasVolume "36" @default.
- W4313491463 isParatext "false" @default.
- W4313491463 isRetracted "false" @default.
- W4313491463 workType "article" @default.