Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313494105> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4313494105 endingPage "1134" @default.
- W4313494105 startingPage "1123" @default.
- W4313494105 abstract "Abstract This study proposes the use of different machine learning techniques to predict the estimated ultimate recovery (EUR) as a function of the hydraulic fracturing design. A set of data includes 200 well production data, and completion designs were collected from oil production wells in the Niobrara shale formation. The completion design parameters include the lateral length, the number of stages, the total injected proppant and slurry volumes, and the maximum treating pressure measured during the fracturing operations. The data set was randomly split into training and testing with a ratio of 75:25. Different machine learning methods were to predict EUR from the completion design including linear regression, random forest (RF), and decision tree (DT) in addition to gradient boosting regression (GBR). EUR prediction from the completion data showed a low accuracy. As result, an intermediate step of estimating the well IP30 (the initial well production rate for the first month) from the completion data was carried out; then, the IP30 and the completion design were used as input parameters to predict the EUR. The linear regression showed some linear relationship between the output and the inputs, where the EUR can be predicted with a linear relationship with an R -value of 0.84. In addition, a linear correlation was developed based on the linear regression model. Moreover, the other ML tools including RF, DT, and GBR presented high accuracy of EUR prediction with correlation coefficient ( R ) values between actual and predicted EUR from the ML model higher than 0.9. This study provides ML application with an empirical correlation to predict the EUR from the completion design parameters at an early time without the need for complex numerical simulation analysis. Unlike the available empirical DCA models that require several months of production to build a sound prediction of EUR, the main advantage of the developed models in this study is that it requires only an initial flow rate along with the completion design to predict EUR with high certainty." @default.
- W4313494105 created "2023-01-06" @default.
- W4313494105 creator A5023804988 @default.
- W4313494105 creator A5046818830 @default.
- W4313494105 creator A5048634311 @default.
- W4313494105 date "2023-01-04" @default.
- W4313494105 modified "2023-09-30" @default.
- W4313494105 title "RETRACTED ARTICLE: Data-driven EUR for multistage hydraulically fractured wells in shale formation using different machine learning methods" @default.
- W4313494105 cites W1967020291 @default.
- W4313494105 cites W1970037416 @default.
- W4313494105 cites W1986433037 @default.
- W4313494105 cites W2008949657 @default.
- W4313494105 cites W2032418871 @default.
- W4313494105 cites W2038590555 @default.
- W4313494105 cites W2039167611 @default.
- W4313494105 cites W2039699475 @default.
- W4313494105 cites W2042695283 @default.
- W4313494105 cites W2048636621 @default.
- W4313494105 cites W2077574365 @default.
- W4313494105 cites W2093012680 @default.
- W4313494105 cites W2094626212 @default.
- W4313494105 cites W2136922672 @default.
- W4313494105 cites W2281899018 @default.
- W4313494105 cites W2597135702 @default.
- W4313494105 cites W2781705711 @default.
- W4313494105 cites W2787249892 @default.
- W4313494105 cites W2809007259 @default.
- W4313494105 cites W2905238286 @default.
- W4313494105 cites W2913844895 @default.
- W4313494105 cites W3034657559 @default.
- W4313494105 cites W3133703502 @default.
- W4313494105 cites W4200271206 @default.
- W4313494105 cites W4237094557 @default.
- W4313494105 cites W4376595535 @default.
- W4313494105 doi "https://doi.org/10.1007/s13202-022-01602-1" @default.
- W4313494105 hasPublicationYear "2023" @default.
- W4313494105 type Work @default.
- W4313494105 citedByCount "0" @default.
- W4313494105 crossrefType "journal-article" @default.
- W4313494105 hasAuthorship W4313494105A5023804988 @default.
- W4313494105 hasAuthorship W4313494105A5046818830 @default.
- W4313494105 hasAuthorship W4313494105A5048634311 @default.
- W4313494105 hasBestOaLocation W43134941051 @default.
- W4313494105 hasConcept C105795698 @default.
- W4313494105 hasConcept C127313418 @default.
- W4313494105 hasConcept C128990827 @default.
- W4313494105 hasConcept C151730666 @default.
- W4313494105 hasConcept C153127940 @default.
- W4313494105 hasConcept C154945302 @default.
- W4313494105 hasConcept C169258074 @default.
- W4313494105 hasConcept C189285262 @default.
- W4313494105 hasConcept C2779096232 @default.
- W4313494105 hasConcept C2779538338 @default.
- W4313494105 hasConcept C2780092901 @default.
- W4313494105 hasConcept C33923547 @default.
- W4313494105 hasConcept C41008148 @default.
- W4313494105 hasConcept C48921125 @default.
- W4313494105 hasConcept C58489278 @default.
- W4313494105 hasConcept C70153297 @default.
- W4313494105 hasConcept C78762247 @default.
- W4313494105 hasConcept C83546350 @default.
- W4313494105 hasConceptScore W4313494105C105795698 @default.
- W4313494105 hasConceptScore W4313494105C127313418 @default.
- W4313494105 hasConceptScore W4313494105C128990827 @default.
- W4313494105 hasConceptScore W4313494105C151730666 @default.
- W4313494105 hasConceptScore W4313494105C153127940 @default.
- W4313494105 hasConceptScore W4313494105C154945302 @default.
- W4313494105 hasConceptScore W4313494105C169258074 @default.
- W4313494105 hasConceptScore W4313494105C189285262 @default.
- W4313494105 hasConceptScore W4313494105C2779096232 @default.
- W4313494105 hasConceptScore W4313494105C2779538338 @default.
- W4313494105 hasConceptScore W4313494105C2780092901 @default.
- W4313494105 hasConceptScore W4313494105C33923547 @default.
- W4313494105 hasConceptScore W4313494105C41008148 @default.
- W4313494105 hasConceptScore W4313494105C48921125 @default.
- W4313494105 hasConceptScore W4313494105C58489278 @default.
- W4313494105 hasConceptScore W4313494105C70153297 @default.
- W4313494105 hasConceptScore W4313494105C78762247 @default.
- W4313494105 hasConceptScore W4313494105C83546350 @default.
- W4313494105 hasIssue "4" @default.
- W4313494105 hasLocation W43134941051 @default.
- W4313494105 hasOpenAccess W4313494105 @default.
- W4313494105 hasPrimaryLocation W43134941051 @default.
- W4313494105 hasRelatedWork W188292369 @default.
- W4313494105 hasRelatedWork W2289505521 @default.
- W4313494105 hasRelatedWork W2566756418 @default.
- W4313494105 hasRelatedWork W2756607978 @default.
- W4313494105 hasRelatedWork W2979774498 @default.
- W4313494105 hasRelatedWork W3159764166 @default.
- W4313494105 hasRelatedWork W4285226556 @default.
- W4313494105 hasRelatedWork W4291492812 @default.
- W4313494105 hasRelatedWork W4313494105 @default.
- W4313494105 hasRelatedWork W288566741 @default.
- W4313494105 hasVolume "13" @default.
- W4313494105 isParatext "false" @default.
- W4313494105 isRetracted "false" @default.
- W4313494105 workType "article" @default.