Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313495268> ?p ?o ?g. }
- W4313495268 endingPage "106492" @default.
- W4313495268 startingPage "106492" @default.
- W4313495268 abstract "The O6-methylguanine-DNA methyltransferase (MGMT) is a deoxyribonucleic acid (DNA) repairing enzyme that has been established as an essential clinical brain tumor biomarker for Glioblastoma Multiforme (GBM). Knowing the status of MGMT methylation biomarkers using multi-parametric MRI (mp-MRI) helps neuro-oncologists to analyze GBM and its treatment plan. The hand-crafted radiomics feature extraction of GBM's subregions, such as edema(ED), tumor core (TC), and enhancing tumor (ET) in the machine learning (ML) framework, was investigated using support vector machine(SVM), K-Nearest Neighbours (KNN), random forest (RF), LightGBM, and extreme gradient boosting (XGB). For tissue-level analysis of the promotor genes in GBM, we used the deep residual neural network (ResNet-18) with 3D architecture, followed by EfficientNet-based investigation for variants as B0 and B1. Lastly, we analyzed the fused deep learning (FDL) framework that combines ML and DL frameworks. Structural mp-MRI consisting of T1, T2, FLAIR, and T1GD having a size of 400 and 185 patients, respectively, for discovery and replication cohorts. Using the CV protocol in the ResNet-3D framework, MGMT methylation status prediction in mp-MRI gave the AUC of 0.753 (p < 0.0001) and 0.72 (p < 0.0001) for the discovery and replication cohort, respectively. We presented that the FDL is ∼7% superior to solo DL and ∼15% to solo ML. The proposed study aims to provide solutions for building an efficient predictive model of MGMT for GBM patients using deep radiomics features obtained from mp-MRI with the end-to-end ResNet-18 3D and FDL imaging signatures." @default.
- W4313495268 created "2023-01-06" @default.
- W4313495268 creator A5002084488 @default.
- W4313495268 creator A5003086301 @default.
- W4313495268 creator A5034035272 @default.
- W4313495268 creator A5036351547 @default.
- W4313495268 creator A5065843107 @default.
- W4313495268 creator A5074569410 @default.
- W4313495268 creator A5078971223 @default.
- W4313495268 creator A5089337640 @default.
- W4313495268 date "2023-02-01" @default.
- W4313495268 modified "2023-10-11" @default.
- W4313495268 title "Fused deep learning paradigm for the prediction of o6-methylguanine-DNA methyltransferase genotype in glioblastoma patients: A neuro-oncological investigation" @default.
- W4313495268 cites W1929045676 @default.
- W4313495268 cites W1991113411 @default.
- W4313495268 cites W1996892731 @default.
- W4313495268 cites W2043257938 @default.
- W4313495268 cites W2058911076 @default.
- W4313495268 cites W2091532770 @default.
- W4313495268 cites W2105100844 @default.
- W4313495268 cites W2117340355 @default.
- W4313495268 cites W2117539524 @default.
- W4313495268 cites W2140663657 @default.
- W4313495268 cites W2160628533 @default.
- W4313495268 cites W2206529707 @default.
- W4313495268 cites W2277070532 @default.
- W4313495268 cites W2290121903 @default.
- W4313495268 cites W2367516440 @default.
- W4313495268 cites W2519238003 @default.
- W4313495268 cites W2565978524 @default.
- W4313495268 cites W2580060826 @default.
- W4313495268 cites W2742585132 @default.
- W4313495268 cites W2743501370 @default.
- W4313495268 cites W2745765293 @default.
- W4313495268 cites W2919356958 @default.
- W4313495268 cites W2970416468 @default.
- W4313495268 cites W2980380170 @default.
- W4313495268 cites W2980870427 @default.
- W4313495268 cites W3023424417 @default.
- W4313495268 cites W3048538617 @default.
- W4313495268 cites W3087858455 @default.
- W4313495268 cites W3106363563 @default.
- W4313495268 cites W3123332641 @default.
- W4313495268 cites W3127929412 @default.
- W4313495268 cites W3128646645 @default.
- W4313495268 cites W3135724915 @default.
- W4313495268 cites W3186910135 @default.
- W4313495268 cites W3187187072 @default.
- W4313495268 cites W3187749735 @default.
- W4313495268 cites W3192201200 @default.
- W4313495268 cites W3198242498 @default.
- W4313495268 cites W3210534354 @default.
- W4313495268 cites W3216445385 @default.
- W4313495268 cites W3217110323 @default.
- W4313495268 cites W4200193210 @default.
- W4313495268 cites W4200225381 @default.
- W4313495268 cites W4211220688 @default.
- W4313495268 cites W4213203281 @default.
- W4313495268 cites W4220709008 @default.
- W4313495268 cites W4280629861 @default.
- W4313495268 cites W4281251645 @default.
- W4313495268 cites W4281263011 @default.
- W4313495268 cites W4281628031 @default.
- W4313495268 cites W4283080659 @default.
- W4313495268 cites W4289774680 @default.
- W4313495268 cites W4292522058 @default.
- W4313495268 cites W4292694401 @default.
- W4313495268 cites W4294675761 @default.
- W4313495268 cites W4296481818 @default.
- W4313495268 doi "https://doi.org/10.1016/j.compbiomed.2022.106492" @default.
- W4313495268 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36621191" @default.
- W4313495268 hasPublicationYear "2023" @default.
- W4313495268 type Work @default.
- W4313495268 citedByCount "4" @default.
- W4313495268 countsByYear W43134952682023 @default.
- W4313495268 crossrefType "journal-article" @default.
- W4313495268 hasAuthorship W4313495268A5002084488 @default.
- W4313495268 hasAuthorship W4313495268A5003086301 @default.
- W4313495268 hasAuthorship W4313495268A5034035272 @default.
- W4313495268 hasAuthorship W4313495268A5036351547 @default.
- W4313495268 hasAuthorship W4313495268A5065843107 @default.
- W4313495268 hasAuthorship W4313495268A5074569410 @default.
- W4313495268 hasAuthorship W4313495268A5078971223 @default.
- W4313495268 hasAuthorship W4313495268A5089337640 @default.
- W4313495268 hasConcept C108583219 @default.
- W4313495268 hasConcept C119857082 @default.
- W4313495268 hasConcept C143998085 @default.
- W4313495268 hasConcept C154945302 @default.
- W4313495268 hasConcept C169258074 @default.
- W4313495268 hasConcept C2776194525 @default.
- W4313495268 hasConcept C2781197716 @default.
- W4313495268 hasConcept C33288867 @default.
- W4313495268 hasConcept C41008148 @default.
- W4313495268 hasConcept C502942594 @default.
- W4313495268 hasConcept C54355233 @default.
- W4313495268 hasConcept C552990157 @default.
- W4313495268 hasConcept C70721500 @default.
- W4313495268 hasConcept C71924100 @default.