Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313496467> ?p ?o ?g. }
- W4313496467 abstract "X-ray free-electron laser (XFEL) is the latest generation of the X-ray source that could become an invaluable technique in structural biology. XFEL has ultrashort pulse duration, extreme peak brilliance, and high spatial coherence, which could enable the observation of the biological molecules in near nature state at room temperature without crystallization. However, for biological systems, due to their low diffraction power and complexity of sample delivery, experiments and data analysis are not straightforward, making it extremely challenging to reconstruct three-dimensional (3D) structures from single particle XFEL data. Given the current limitations to the amount and resolution of the data from such XFEL experiments, we propose a new hybrid approach for characterizing biomolecular conformational transitions by using a single 2D low-resolution XFEL diffraction pattern in combination with another known conformation. In our method, we represent the molecular structure with a coarse-grained model, the Gaussian mixture model, to describe large conformational transitions from low-resolution XFEL data. We obtain plausible 3D structural models that are consistent with the XFEL diffraction pattern by deforming an initial structural model to maximize the similarity between the target pattern and the simulated diffraction patterns from the candidate models. We tested the proposed algorithm on two biomolecules of different sizes with different complexities of conformational transitions, adenylate kinase, and elongation factor 2, using synthetic XFEL data. The results show that, with the proposed algorithm, we can successfully describe the conformational transitions by flexibly fitting the coarse-grained model of one conformation to become consistent with an XFEL diffraction pattern simulated from another conformation. In addition, we showed that the incident beam orientation has some effect on the accuracy of the 3D structure modeling and discussed the reasons for the inaccuracies for certain orientations. The proposed method could serve as an alternative approach for retrieving information on 3D conformational transitions from the XFEL diffraction patterns to interpret experimental data. Since the molecules are represented by Gaussian kernels and no atomic structure is needed in principle, such a method could also be used as a tool to seek initial models for 3D reconstruction algorithms." @default.
- W4313496467 created "2023-01-06" @default.
- W4313496467 creator A5036207834 @default.
- W4313496467 creator A5063144451 @default.
- W4313496467 creator A5086033700 @default.
- W4313496467 creator A5086953904 @default.
- W4313496467 creator A5090638713 @default.
- W4313496467 date "2022-08-29" @default.
- W4313496467 modified "2023-10-18" @default.
- W4313496467 title "A hybrid approach to study large conformational transitions of biomolecules from single particle XFEL diffraction data" @default.
- W4313496467 cites W1533620685 @default.
- W4313496467 cites W1625860372 @default.
- W4313496467 cites W1899151619 @default.
- W4313496467 cites W1984370357 @default.
- W4313496467 cites W1988662633 @default.
- W4313496467 cites W1989161865 @default.
- W4313496467 cites W1993570118 @default.
- W4313496467 cites W1995931975 @default.
- W4313496467 cites W2011788957 @default.
- W4313496467 cites W2014425795 @default.
- W4313496467 cites W2028174524 @default.
- W4313496467 cites W2041306637 @default.
- W4313496467 cites W2043134292 @default.
- W4313496467 cites W2050954271 @default.
- W4313496467 cites W2051567790 @default.
- W4313496467 cites W2055453593 @default.
- W4313496467 cites W2056331547 @default.
- W4313496467 cites W2057385367 @default.
- W4313496467 cites W2058094839 @default.
- W4313496467 cites W2067286642 @default.
- W4313496467 cites W2071609593 @default.
- W4313496467 cites W2072973641 @default.
- W4313496467 cites W2081303918 @default.
- W4313496467 cites W2084069427 @default.
- W4313496467 cites W2091711066 @default.
- W4313496467 cites W2094685303 @default.
- W4313496467 cites W2100822043 @default.
- W4313496467 cites W2110936528 @default.
- W4313496467 cites W2128939839 @default.
- W4313496467 cites W2132629607 @default.
- W4313496467 cites W2138845186 @default.
- W4313496467 cites W2144054043 @default.
- W4313496467 cites W2160880244 @default.
- W4313496467 cites W2170146374 @default.
- W4313496467 cites W2231570435 @default.
- W4313496467 cites W2250722998 @default.
- W4313496467 cites W2261998615 @default.
- W4313496467 cites W2297637824 @default.
- W4313496467 cites W2462233533 @default.
- W4313496467 cites W2593625173 @default.
- W4313496467 cites W2604948333 @default.
- W4313496467 cites W2608153289 @default.
- W4313496467 cites W2612715625 @default.
- W4313496467 cites W2613580110 @default.
- W4313496467 cites W2748417784 @default.
- W4313496467 cites W2774559011 @default.
- W4313496467 cites W2887067015 @default.
- W4313496467 cites W2890339033 @default.
- W4313496467 cites W2892069134 @default.
- W4313496467 cites W2894460353 @default.
- W4313496467 cites W2909045179 @default.
- W4313496467 cites W2910571000 @default.
- W4313496467 cites W2917749467 @default.
- W4313496467 cites W2947359287 @default.
- W4313496467 cites W2970228923 @default.
- W4313496467 cites W3005553970 @default.
- W4313496467 cites W3093646295 @default.
- W4313496467 cites W3094051077 @default.
- W4313496467 cites W3130606657 @default.
- W4313496467 cites W3188795660 @default.
- W4313496467 cites W3192986217 @default.
- W4313496467 doi "https://doi.org/10.3389/fmolb.2022.913860" @default.
- W4313496467 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36660427" @default.
- W4313496467 hasPublicationYear "2022" @default.
- W4313496467 type Work @default.
- W4313496467 citedByCount "0" @default.
- W4313496467 crossrefType "journal-article" @default.
- W4313496467 hasAuthorship W4313496467A5036207834 @default.
- W4313496467 hasAuthorship W4313496467A5063144451 @default.
- W4313496467 hasAuthorship W4313496467A5086033700 @default.
- W4313496467 hasAuthorship W4313496467A5086953904 @default.
- W4313496467 hasAuthorship W4313496467A5090638713 @default.
- W4313496467 hasBestOaLocation W43134964671 @default.
- W4313496467 hasConcept C120665830 @default.
- W4313496467 hasConcept C121332964 @default.
- W4313496467 hasConcept C138268822 @default.
- W4313496467 hasConcept C154945302 @default.
- W4313496467 hasConcept C171250308 @default.
- W4313496467 hasConcept C186060115 @default.
- W4313496467 hasConcept C192562407 @default.
- W4313496467 hasConcept C207114421 @default.
- W4313496467 hasConcept C2781181686 @default.
- W4313496467 hasConcept C41008148 @default.
- W4313496467 hasConcept C49853544 @default.
- W4313496467 hasConcept C62520636 @default.
- W4313496467 hasConcept C86803240 @default.
- W4313496467 hasConceptScore W4313496467C120665830 @default.
- W4313496467 hasConceptScore W4313496467C121332964 @default.
- W4313496467 hasConceptScore W4313496467C138268822 @default.
- W4313496467 hasConceptScore W4313496467C154945302 @default.