Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313496670> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4313496670 abstract "With the recent advances in the fields of machine learning, neural networks and deep-learning algorithms have become a prevalent subject of computer vision. Especially for tasks like object classification and detection Convolutional Neu-ronal Networks (CNNs) have surpassed the previous traditional approaches. In addition to these applications, CNNs can recently also be found in other applications. For example the parametrization of video encoding algorithms as used in our example is quite a new application domain. Especially CNN's high recognition rate makes them particularly suitable for finding Regions of Interest (ROIs) in video sequences, which can be used for adapting the data rate of the compressed video stream accordingly. On the downside, these CNN require an immense amount of processing power and memory bandwidth. Object detection networks such as You Only Look Once (YOLO) try to balance processing speed and accuracy but still rely on power-hungry GPUs to meet real-time requirements. Specialized hardware like Field Programmable Gate Array (FPGA) implementations proved to strongly reduce this problem while still providing sufficient computational power. In this paper we propose a flexible architecture for object detection hardware acceleration based on the YOLO v3-tiny model. The reconfigurable accelerator comprises a high throughput convolution engine, custom blocks for all additional CNN operations and a programmable control unit to manage on-chip execution. The model can be deployed without significant changes based on 32-bit floating point values and without further methods that would reduce the model accuracy. Experimental results show a high capability of the design to accelerate the object detection task with a processing time of 27.5 ms per frame. It is thus real-time-capable for 30 FPS applications at frequency of 200 MHz." @default.
- W4313496670 created "2023-01-06" @default.
- W4313496670 creator A5013006770 @default.
- W4313496670 creator A5038698717 @default.
- W4313496670 creator A5040177395 @default.
- W4313496670 creator A5085015365 @default.
- W4313496670 date "2022-08-01" @default.
- W4313496670 modified "2023-10-06" @default.
- W4313496670 title "A YOLO v3-tiny FPGA Architecture using a Reconfigurable Hardware Accelerator for Real-time Region of Interest Detection" @default.
- W4313496670 cites W2565639579 @default.
- W4313496670 cites W2935524202 @default.
- W4313496670 cites W2953162405 @default.
- W4313496670 cites W2963037989 @default.
- W4313496670 cites W3013346878 @default.
- W4313496670 cites W3035946844 @default.
- W4313496670 cites W3036920006 @default.
- W4313496670 cites W3092526199 @default.
- W4313496670 cites W3160929742 @default.
- W4313496670 cites W3206315185 @default.
- W4313496670 cites W4220706733 @default.
- W4313496670 doi "https://doi.org/10.1109/dsd57027.2022.00021" @default.
- W4313496670 hasPublicationYear "2022" @default.
- W4313496670 type Work @default.
- W4313496670 citedByCount "1" @default.
- W4313496670 countsByYear W43134966702023 @default.
- W4313496670 crossrefType "proceedings-article" @default.
- W4313496670 hasAuthorship W4313496670A5013006770 @default.
- W4313496670 hasAuthorship W4313496670A5038698717 @default.
- W4313496670 hasAuthorship W4313496670A5040177395 @default.
- W4313496670 hasAuthorship W4313496670A5085015365 @default.
- W4313496670 hasConcept C108583219 @default.
- W4313496670 hasConcept C13164978 @default.
- W4313496670 hasConcept C149635348 @default.
- W4313496670 hasConcept C153180895 @default.
- W4313496670 hasConcept C154945302 @default.
- W4313496670 hasConcept C157764524 @default.
- W4313496670 hasConcept C2776151529 @default.
- W4313496670 hasConcept C41008148 @default.
- W4313496670 hasConcept C42935608 @default.
- W4313496670 hasConcept C555944384 @default.
- W4313496670 hasConcept C76155785 @default.
- W4313496670 hasConcept C81363708 @default.
- W4313496670 hasConcept C9390403 @default.
- W4313496670 hasConceptScore W4313496670C108583219 @default.
- W4313496670 hasConceptScore W4313496670C13164978 @default.
- W4313496670 hasConceptScore W4313496670C149635348 @default.
- W4313496670 hasConceptScore W4313496670C153180895 @default.
- W4313496670 hasConceptScore W4313496670C154945302 @default.
- W4313496670 hasConceptScore W4313496670C157764524 @default.
- W4313496670 hasConceptScore W4313496670C2776151529 @default.
- W4313496670 hasConceptScore W4313496670C41008148 @default.
- W4313496670 hasConceptScore W4313496670C42935608 @default.
- W4313496670 hasConceptScore W4313496670C555944384 @default.
- W4313496670 hasConceptScore W4313496670C76155785 @default.
- W4313496670 hasConceptScore W4313496670C81363708 @default.
- W4313496670 hasConceptScore W4313496670C9390403 @default.
- W4313496670 hasLocation W43134966701 @default.
- W4313496670 hasOpenAccess W4313496670 @default.
- W4313496670 hasPrimaryLocation W43134966701 @default.
- W4313496670 hasRelatedWork W2731899572 @default.
- W4313496670 hasRelatedWork W2999805992 @default.
- W4313496670 hasRelatedWork W3011074480 @default.
- W4313496670 hasRelatedWork W3116150086 @default.
- W4313496670 hasRelatedWork W3133861977 @default.
- W4313496670 hasRelatedWork W4200173597 @default.
- W4313496670 hasRelatedWork W4291897433 @default.
- W4313496670 hasRelatedWork W4311401716 @default.
- W4313496670 hasRelatedWork W4312417841 @default.
- W4313496670 hasRelatedWork W4321369474 @default.
- W4313496670 isParatext "false" @default.
- W4313496670 isRetracted "false" @default.
- W4313496670 workType "article" @default.