Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313500132> ?p ?o ?g. }
- W4313500132 endingPage "197" @default.
- W4313500132 startingPage "179" @default.
- W4313500132 abstract "Abstract. Decadal climate predictions, obtained by constraining the initial condition of a dynamical model through a truthful estimate of the observed climate state, provide an accurate assessment of near-term climate change and are a useful tool to inform decision-makers on future climate-related risks. Here we present results from the CMIP6 (Coupled Model Intercomparison Project Phase 6) Decadal Climate Prediction Project (DCPP) decadal hindcasts produced with the operational CMCC (Euro-Mediterranean Center on Climate Change) decadal prediction system (DPS), based on the fully coupled CMCC-CM2-SR5 dynamical model. A 20-member suite of 10-year retrospective forecasts, initialized every year from 1960 to 2020, is performed using a full-field initialization strategy. The predictive skill for key variables is assessed and compared with the skill of an ensemble of non-initialized historical simulations so as to quantify the added value of the initialization. In particular, the CMCC DPS is able to skillfully reproduce past climate surface and subsurface temperature fluctuations over large parts of the globe. The North Atlantic Ocean is the region that benefits the most from initialization, with the largest skill enhancement occurring over the subpolar region compared to historical simulations. On the other hand, the predictive skill over the Pacific Ocean rapidly decays with forecast time, especially over the North Pacific. In terms of precipitation, the skill of the CMCC DPS is significantly higher than that of the historical simulations over a few specific regions, including the Sahel, northern Eurasia, and over western and central Europe. The Atlantic multidecadal variability is also skillfully predicted, and this likely contributes to the skill found over remote areas through downstream influence, circulation changes, and teleconnections. Considering the relatively small ensemble size, a remarkable prediction skill is also found for the North Atlantic Oscillation, with maximum correlations obtained in the 1–9 lead year range. Systematic errors also affect the forecast quality of the CMCC DPS, featuring a prominent cold bias over the Northern Hemisphere, which is not found in the historical runs, suggesting that, in some areas, the adopted full-field initialization strategy likely perturbs the equilibrium state of the model climate quite significantly. The encouraging results obtained in this study indicate that climate variability over land can be predictable over a multiyear range, and they demonstrate that the CMCC DPS is a valuable addition to the current generation of DPSs. This stresses the need to further explore the potential of the near-term predictions, further improving future decadal systems and initialization methods, with the aim to provide a reliable tool to inform decision-makers on how regional climate will evolve in the next decade." @default.
- W4313500132 created "2023-01-06" @default.
- W4313500132 creator A5016655930 @default.
- W4313500132 creator A5027081468 @default.
- W4313500132 creator A5035273096 @default.
- W4313500132 creator A5040684366 @default.
- W4313500132 creator A5041280470 @default.
- W4313500132 creator A5046318913 @default.
- W4313500132 creator A5049824040 @default.
- W4313500132 creator A5057585451 @default.
- W4313500132 creator A5064125034 @default.
- W4313500132 date "2023-01-05" @default.
- W4313500132 modified "2023-10-18" @default.
- W4313500132 title "The Euro-Mediterranean Center on Climate Change (CMCC) decadal prediction system" @default.
- W4313500132 cites W1740666627 @default.
- W4313500132 cites W1970329847 @default.
- W4313500132 cites W1980939421 @default.
- W4313500132 cites W1982140334 @default.
- W4313500132 cites W1982418161 @default.
- W4313500132 cites W1994753696 @default.
- W4313500132 cites W1997834612 @default.
- W4313500132 cites W2000841912 @default.
- W4313500132 cites W2010690624 @default.
- W4313500132 cites W2020787846 @default.
- W4313500132 cites W2024966118 @default.
- W4313500132 cites W2028658915 @default.
- W4313500132 cites W2031694841 @default.
- W4313500132 cites W2039105554 @default.
- W4313500132 cites W2040763894 @default.
- W4313500132 cites W2051880259 @default.
- W4313500132 cites W2053831820 @default.
- W4313500132 cites W2055192091 @default.
- W4313500132 cites W2058759684 @default.
- W4313500132 cites W2062142825 @default.
- W4313500132 cites W2067994891 @default.
- W4313500132 cites W2080120903 @default.
- W4313500132 cites W2083178128 @default.
- W4313500132 cites W2084571691 @default.
- W4313500132 cites W2090249381 @default.
- W4313500132 cites W2099664128 @default.
- W4313500132 cites W2102151016 @default.
- W4313500132 cites W2121303799 @default.
- W4313500132 cites W2121523631 @default.
- W4313500132 cites W2129629557 @default.
- W4313500132 cites W2131462802 @default.
- W4313500132 cites W2173537679 @default.
- W4313500132 cites W2177212936 @default.
- W4313500132 cites W2177291244 @default.
- W4313500132 cites W2280322140 @default.
- W4313500132 cites W2337225114 @default.
- W4313500132 cites W2338855793 @default.
- W4313500132 cites W2414528099 @default.
- W4313500132 cites W2496850338 @default.
- W4313500132 cites W2529314839 @default.
- W4313500132 cites W2538529636 @default.
- W4313500132 cites W2617092095 @default.
- W4313500132 cites W2648051471 @default.
- W4313500132 cites W2726975971 @default.
- W4313500132 cites W2738794074 @default.
- W4313500132 cites W2794001696 @default.
- W4313500132 cites W2811161607 @default.
- W4313500132 cites W2903814883 @default.
- W4313500132 cites W2909390430 @default.
- W4313500132 cites W2935344642 @default.
- W4313500132 cites W2943067256 @default.
- W4313500132 cites W2946779411 @default.
- W4313500132 cites W2967843324 @default.
- W4313500132 cites W2999461522 @default.
- W4313500132 cites W3003390122 @default.
- W4313500132 cites W3004241035 @default.
- W4313500132 cites W3013884049 @default.
- W4313500132 cites W3014125413 @default.
- W4313500132 cites W3025949386 @default.
- W4313500132 cites W3033237631 @default.
- W4313500132 cites W3045947152 @default.
- W4313500132 cites W3082636675 @default.
- W4313500132 cites W3084447606 @default.
- W4313500132 cites W3092606359 @default.
- W4313500132 cites W3095558307 @default.
- W4313500132 cites W3112928837 @default.
- W4313500132 cites W3119157875 @default.
- W4313500132 cites W3130770380 @default.
- W4313500132 cites W3152720552 @default.
- W4313500132 cites W3165681011 @default.
- W4313500132 cites W3168437964 @default.
- W4313500132 cites W3176574595 @default.
- W4313500132 cites W3206516493 @default.
- W4313500132 cites W4223624832 @default.
- W4313500132 cites W4280630276 @default.
- W4313500132 cites W4281715346 @default.
- W4313500132 cites W4287832361 @default.
- W4313500132 cites W4292748625 @default.
- W4313500132 cites W91042601 @default.
- W4313500132 doi "https://doi.org/10.5194/gmd-16-179-2023" @default.
- W4313500132 hasPublicationYear "2023" @default.
- W4313500132 type Work @default.
- W4313500132 citedByCount "3" @default.
- W4313500132 countsByYear W43135001322023 @default.