Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313500511> ?p ?o ?g. }
- W4313500511 abstract "We have numerically investigated the electrodiffusio-osmotic (EDO) transport of non-Newtonian electrolytic solution, governed by an externally applied electric field and concentration difference, in a charged nanochannel connected with two reservoirs. We have examined the EDO transport characteristics by varying electrical, chemical, and rheological parameters. The relative augmentation in net throughput due to EDO transport is compared to the pure electro-osmotic flow and is found to be greater than unity [reaches up to the order of ∼O(103)] for the considered range of concentration difference and flow-behavior index. As shown, the EDO throughput with concentration difference follows an increasing–decreasing trend at the smaller nanochannel height (<10 nm), while exhibiting an increasing trend at the higher nanochannel height (>10 nm). Notably, the net flow for shear-thinning fluid gets fully reversed at higher concentration differences and for a higher value of zeta potential. In the second part of the work, we discuss the use of an artificial neural network (ANN) essentially to predict the net EDO throughput from the nanochannel. The ANN model considered here is of a single-hidden-layer feedforward type. For activation, we used a sigmoid-purelinear transfer function between the layers. Additionally, the Levenberg–Marquardt algorithm is used to perform the backpropagation. To predict the volume flow rate per unit width, we have used four input features: concentration difference, flow-behavior index, nanochannel height, and zeta potential. We have established that an ANN model with eight neurons in the hidden layer accurately predicts the flow rate per unit width with a very small root mean squared error. The inferences of this analysis could be of huge practical importance in designing the state-of-the-art nanodevices/systems intended for offering finer control over the underlying transport." @default.
- W4313500511 created "2023-01-06" @default.
- W4313500511 creator A5019079753 @default.
- W4313500511 creator A5026855740 @default.
- W4313500511 creator A5039235627 @default.
- W4313500511 date "2023-01-01" @default.
- W4313500511 modified "2023-10-01" @default.
- W4313500511 title "Prediction of electrodiffusio-osmotic transport of shear-thinning fluids in a nanochannel using artificial neural network" @default.
- W4313500511 cites W1457337077 @default.
- W4313500511 cites W1498436455 @default.
- W4313500511 cites W1828330553 @default.
- W4313500511 cites W1836928418 @default.
- W4313500511 cites W1964148794 @default.
- W4313500511 cites W1970401732 @default.
- W4313500511 cites W1979294920 @default.
- W4313500511 cites W1986642455 @default.
- W4313500511 cites W1987283345 @default.
- W4313500511 cites W1990937756 @default.
- W4313500511 cites W1992592067 @default.
- W4313500511 cites W1993890409 @default.
- W4313500511 cites W2002126013 @default.
- W4313500511 cites W2002393231 @default.
- W4313500511 cites W2006265832 @default.
- W4313500511 cites W2008101423 @default.
- W4313500511 cites W2013729231 @default.
- W4313500511 cites W2018008829 @default.
- W4313500511 cites W2029650991 @default.
- W4313500511 cites W2037972732 @default.
- W4313500511 cites W2041794483 @default.
- W4313500511 cites W2052641688 @default.
- W4313500511 cites W2054156336 @default.
- W4313500511 cites W2058249658 @default.
- W4313500511 cites W2059648430 @default.
- W4313500511 cites W2063477461 @default.
- W4313500511 cites W2064395800 @default.
- W4313500511 cites W2068368035 @default.
- W4313500511 cites W2068889201 @default.
- W4313500511 cites W2082831422 @default.
- W4313500511 cites W2084781368 @default.
- W4313500511 cites W2090064789 @default.
- W4313500511 cites W2104194676 @default.
- W4313500511 cites W2131046028 @default.
- W4313500511 cites W2145475581 @default.
- W4313500511 cites W2147488605 @default.
- W4313500511 cites W2151707723 @default.
- W4313500511 cites W2154060749 @default.
- W4313500511 cites W2235344039 @default.
- W4313500511 cites W2298631686 @default.
- W4313500511 cites W2324295257 @default.
- W4313500511 cites W2328692626 @default.
- W4313500511 cites W2328815039 @default.
- W4313500511 cites W2401904574 @default.
- W4313500511 cites W2469577483 @default.
- W4313500511 cites W2474014326 @default.
- W4313500511 cites W2530159130 @default.
- W4313500511 cites W2570535399 @default.
- W4313500511 cites W2771966751 @default.
- W4313500511 cites W2793232033 @default.
- W4313500511 cites W2801262257 @default.
- W4313500511 cites W2809704831 @default.
- W4313500511 cites W2810726346 @default.
- W4313500511 cites W2890056659 @default.
- W4313500511 cites W2893013270 @default.
- W4313500511 cites W2916981390 @default.
- W4313500511 cites W2954430814 @default.
- W4313500511 cites W2964077959 @default.
- W4313500511 cites W2995460286 @default.
- W4313500511 cites W3016772891 @default.
- W4313500511 cites W3037049638 @default.
- W4313500511 cites W3041465253 @default.
- W4313500511 cites W3043938087 @default.
- W4313500511 cites W3081760739 @default.
- W4313500511 cites W3088206924 @default.
- W4313500511 cites W3093865889 @default.
- W4313500511 cites W3096609136 @default.
- W4313500511 cites W3111827660 @default.
- W4313500511 cites W3134746294 @default.
- W4313500511 cites W3168464938 @default.
- W4313500511 cites W3194930956 @default.
- W4313500511 cites W3198548782 @default.
- W4313500511 cites W3199140098 @default.
- W4313500511 cites W3207514584 @default.
- W4313500511 cites W4205236922 @default.
- W4313500511 cites W4214523629 @default.
- W4313500511 cites W4224250374 @default.
- W4313500511 cites W4283769042 @default.
- W4313500511 cites W4289717668 @default.
- W4313500511 cites W4292877861 @default.
- W4313500511 cites W4306673444 @default.
- W4313500511 cites W4310805229 @default.
- W4313500511 cites W4311993047 @default.
- W4313500511 doi "https://doi.org/10.1063/5.0134432" @default.
- W4313500511 hasPublicationYear "2023" @default.
- W4313500511 type Work @default.
- W4313500511 citedByCount "5" @default.
- W4313500511 countsByYear W43135005112023 @default.
- W4313500511 crossrefType "journal-article" @default.
- W4313500511 hasAuthorship W4313500511A5019079753 @default.
- W4313500511 hasAuthorship W4313500511A5026855740 @default.
- W4313500511 hasAuthorship W4313500511A5039235627 @default.