Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313502414> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4313502414 endingPage "526" @default.
- W4313502414 startingPage "515" @default.
- W4313502414 abstract "This paper describes how the multilayer perceptron neural network (MLPNN) trained by the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-newton back-propagation approach was used to estimate heavy metal concentrations: Aluminum (Al), Lead (Pb), Copper (Cu), and Iron (Fe), in the province of Taza using sixteen physicochemical factors measured from 100 samples collected from surface water sources by our team, according to the protocol of the national water office (ONE). We chose a network with only one hidden layer to identify the network architecture to employ. The number of neurons in the hidden layer was varied, as were the types of transfer and activation functions, and the BFGS learning method was used. The following statistical metrics were used to evaluate the performance of the neural network’s stochastic models: Examining the adjustment graphs and residue, as well as the Error Sum of Squares (SSE); the mean bias error (MBE) and determination coefficient (R²). The results reveal that the predictive models created using the artificial neural network method (ANN) are quite efficient, thanks to the BFGS algorithm’s efficiency and speed of convergence. An architectural network [16-8-1] (16: number of variables in input layer, 8: number of hidden layer, 1: number of variables in output layer) produced the best results,{R²: Al(0.954), Pb(0.942), Cu(0.921), Fe(0.968)}, {SSE: Al(0.396), Pb(0.0059), Cu(0.252), Fe(4.29)} and {MBE: Al(–0.033), Pb(0.008), Cu(–0.004), Fe(0.091)}, which is developed so that each model is responsible for estimating the concentration of a single heavy metal. This result demonstrates that there is a non-linear relationship between the physical-chemical properties evaluated and the heavy metal content of surface water in the Taza province." @default.
- W4313502414 created "2023-01-06" @default.
- W4313502414 creator A5026688429 @default.
- W4313502414 creator A5059069283 @default.
- W4313502414 date "2022-12-21" @default.
- W4313502414 modified "2023-09-30" @default.
- W4313502414 title "APPLICATION NEURAL NETWORK APPROACH FOR THE ESTIMATION OF HEAVY METAL CONCENTRATIONS IN THE INAOUEN WATERSHED" @default.
- W4313502414 cites W1971735090 @default.
- W4313502414 cites W1972805072 @default.
- W4313502414 cites W1977537959 @default.
- W4313502414 cites W1988115241 @default.
- W4313502414 cites W2018219591 @default.
- W4313502414 cites W2034621771 @default.
- W4313502414 cites W2043612705 @default.
- W4313502414 cites W2070349493 @default.
- W4313502414 cites W2103496339 @default.
- W4313502414 cites W2137983211 @default.
- W4313502414 cites W2160208155 @default.
- W4313502414 cites W2258922941 @default.
- W4313502414 cites W2277944317 @default.
- W4313502414 cites W2780275328 @default.
- W4313502414 cites W2789600509 @default.
- W4313502414 cites W2800363843 @default.
- W4313502414 cites W2895556389 @default.
- W4313502414 cites W2978631110 @default.
- W4313502414 cites W3095982085 @default.
- W4313502414 cites W3097973206 @default.
- W4313502414 cites W3165096024 @default.
- W4313502414 cites W3193421502 @default.
- W4313502414 cites W4292170088 @default.
- W4313502414 doi "https://doi.org/10.3846/jeelm.2022.18059" @default.
- W4313502414 hasPublicationYear "2022" @default.
- W4313502414 type Work @default.
- W4313502414 citedByCount "0" @default.
- W4313502414 crossrefType "journal-article" @default.
- W4313502414 hasAuthorship W4313502414A5026688429 @default.
- W4313502414 hasAuthorship W4313502414A5059069283 @default.
- W4313502414 hasBestOaLocation W43135024141 @default.
- W4313502414 hasConcept C105795698 @default.
- W4313502414 hasConcept C11413529 @default.
- W4313502414 hasConcept C132721684 @default.
- W4313502414 hasConcept C139945424 @default.
- W4313502414 hasConcept C151319957 @default.
- W4313502414 hasConcept C154945302 @default.
- W4313502414 hasConcept C162324750 @default.
- W4313502414 hasConcept C186060115 @default.
- W4313502414 hasConcept C2777303404 @default.
- W4313502414 hasConcept C33923547 @default.
- W4313502414 hasConcept C41008148 @default.
- W4313502414 hasConcept C50522688 @default.
- W4313502414 hasConcept C50644808 @default.
- W4313502414 hasConcept C60908668 @default.
- W4313502414 hasConcept C76155785 @default.
- W4313502414 hasConcept C86803240 @default.
- W4313502414 hasConceptScore W4313502414C105795698 @default.
- W4313502414 hasConceptScore W4313502414C11413529 @default.
- W4313502414 hasConceptScore W4313502414C132721684 @default.
- W4313502414 hasConceptScore W4313502414C139945424 @default.
- W4313502414 hasConceptScore W4313502414C151319957 @default.
- W4313502414 hasConceptScore W4313502414C154945302 @default.
- W4313502414 hasConceptScore W4313502414C162324750 @default.
- W4313502414 hasConceptScore W4313502414C186060115 @default.
- W4313502414 hasConceptScore W4313502414C2777303404 @default.
- W4313502414 hasConceptScore W4313502414C33923547 @default.
- W4313502414 hasConceptScore W4313502414C41008148 @default.
- W4313502414 hasConceptScore W4313502414C50522688 @default.
- W4313502414 hasConceptScore W4313502414C50644808 @default.
- W4313502414 hasConceptScore W4313502414C60908668 @default.
- W4313502414 hasConceptScore W4313502414C76155785 @default.
- W4313502414 hasConceptScore W4313502414C86803240 @default.
- W4313502414 hasIssue "4" @default.
- W4313502414 hasLocation W43135024141 @default.
- W4313502414 hasOpenAccess W4313502414 @default.
- W4313502414 hasPrimaryLocation W43135024141 @default.
- W4313502414 hasRelatedWork W1489969923 @default.
- W4313502414 hasRelatedWork W1900570967 @default.
- W4313502414 hasRelatedWork W2038329751 @default.
- W4313502414 hasRelatedWork W2091943352 @default.
- W4313502414 hasRelatedWork W2158671777 @default.
- W4313502414 hasRelatedWork W2749461815 @default.
- W4313502414 hasRelatedWork W2890929759 @default.
- W4313502414 hasRelatedWork W3042796155 @default.
- W4313502414 hasRelatedWork W3171559016 @default.
- W4313502414 hasRelatedWork W4226023263 @default.
- W4313502414 hasVolume "30" @default.
- W4313502414 isParatext "false" @default.
- W4313502414 isRetracted "false" @default.
- W4313502414 workType "article" @default.