Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313502443> ?p ?o ?g. }
- W4313502443 endingPage "2" @default.
- W4313502443 startingPage "2" @default.
- W4313502443 abstract "Chlorophyll a (chl-a) concentration is an important parameter for evaluating the degree of water eutrophication. Monitoring it accurately through remote sensing is thus of great significance for early warnings of water eutrophication, and the inversion of water quality from UAV images has attracted more and more attention. In this study, a regression method to estimate chl-a was proposed; it used a small multispectral UAV to collect data and took the vegetation indices as intermediate variables. For this purpose, ten monitoring points were selected in Erhai Lake, China, and two months of monitoring and data collection were conducted during a cyanobacterial bloom period. Finally, 155 sets of valid data were obtained. The imaging data were obtained using a multispectral UAV, water samples were collected from the lake, and the chl-a concentration was obtained in the laboratory. Then, the images were preprocessed to extract the information from different wavebands. The univariate regression of each vegetation index and the regression using band information were used for comparative analysis. Four machine learning algorithms were used to build the model: support vector machine (SVM), random forest (RF), extreme learning machine (ELM), and convolutional neural network (CNN). The results showed that the effect of estimating the chl-a concentration via multiple regression using vegetation indices was generally better than that via regression with a single vegetation index and original band information. The CNN model obtained the best results (R2 = 0.7917, RMSE = 8.7660, and MRE = 0.2461). This study showed the reliability of using multiple regression based on vegetation indices to estimate the chl-a of surface water." @default.
- W4313502443 created "2023-01-06" @default.
- W4313502443 creator A5004178500 @default.
- W4313502443 creator A5039021048 @default.
- W4313502443 creator A5041339234 @default.
- W4313502443 creator A5068312095 @default.
- W4313502443 creator A5088284901 @default.
- W4313502443 date "2022-12-21" @default.
- W4313502443 modified "2023-09-30" @default.
- W4313502443 title "Water Chlorophyll a Estimation Using UAV-Based Multispectral Data and Machine Learning" @default.
- W4313502443 cites W1989863789 @default.
- W4313502443 cites W2007101051 @default.
- W4313502443 cites W2016613000 @default.
- W4313502443 cites W2027821470 @default.
- W4313502443 cites W2040621183 @default.
- W4313502443 cites W2063450426 @default.
- W4313502443 cites W2063907334 @default.
- W4313502443 cites W2067339322 @default.
- W4313502443 cites W2083225756 @default.
- W4313502443 cites W2085965017 @default.
- W4313502443 cites W2107027078 @default.
- W4313502443 cites W2113600582 @default.
- W4313502443 cites W2119981939 @default.
- W4313502443 cites W2120514850 @default.
- W4313502443 cites W2121971770 @default.
- W4313502443 cites W2126610649 @default.
- W4313502443 cites W2141193993 @default.
- W4313502443 cites W2149876895 @default.
- W4313502443 cites W2151880387 @default.
- W4313502443 cites W2155662164 @default.
- W4313502443 cites W2166516660 @default.
- W4313502443 cites W2172000864 @default.
- W4313502443 cites W2230051944 @default.
- W4313502443 cites W2291000060 @default.
- W4313502443 cites W2293584046 @default.
- W4313502443 cites W2561188086 @default.
- W4313502443 cites W2592370510 @default.
- W4313502443 cites W2603228623 @default.
- W4313502443 cites W2622246108 @default.
- W4313502443 cites W2701878883 @default.
- W4313502443 cites W2763697633 @default.
- W4313502443 cites W2765366036 @default.
- W4313502443 cites W2766566842 @default.
- W4313502443 cites W2772477243 @default.
- W4313502443 cites W2808645289 @default.
- W4313502443 cites W2810956684 @default.
- W4313502443 cites W2886951474 @default.
- W4313502443 cites W2888605084 @default.
- W4313502443 cites W2896782565 @default.
- W4313502443 cites W2907102908 @default.
- W4313502443 cites W2911964244 @default.
- W4313502443 cites W2918410041 @default.
- W4313502443 cites W2962949934 @default.
- W4313502443 cites W2979808541 @default.
- W4313502443 cites W3003765781 @default.
- W4313502443 cites W3004942926 @default.
- W4313502443 cites W3005389121 @default.
- W4313502443 cites W3009765294 @default.
- W4313502443 cites W3011988525 @default.
- W4313502443 cites W3024768525 @default.
- W4313502443 cites W3027604340 @default.
- W4313502443 cites W3035460619 @default.
- W4313502443 cites W3038073891 @default.
- W4313502443 cites W3042832640 @default.
- W4313502443 cites W3043791248 @default.
- W4313502443 cites W3049388893 @default.
- W4313502443 cites W3082590915 @default.
- W4313502443 cites W3083933034 @default.
- W4313502443 cites W3087070249 @default.
- W4313502443 cites W3087141823 @default.
- W4313502443 cites W3111581013 @default.
- W4313502443 cites W3122121107 @default.
- W4313502443 cites W3124295218 @default.
- W4313502443 cites W3133424649 @default.
- W4313502443 cites W3134710827 @default.
- W4313502443 cites W3136394112 @default.
- W4313502443 cites W3158397887 @default.
- W4313502443 cites W3164917952 @default.
- W4313502443 cites W3197622696 @default.
- W4313502443 cites W3206824631 @default.
- W4313502443 cites W4220725168 @default.
- W4313502443 cites W4294958269 @default.
- W4313502443 cites W4303980697 @default.
- W4313502443 cites W4304182492 @default.
- W4313502443 doi "https://doi.org/10.3390/drones7010002" @default.
- W4313502443 hasPublicationYear "2022" @default.
- W4313502443 type Work @default.
- W4313502443 citedByCount "1" @default.
- W4313502443 countsByYear W43135024432023 @default.
- W4313502443 crossrefType "journal-article" @default.
- W4313502443 hasAuthorship W4313502443A5004178500 @default.
- W4313502443 hasAuthorship W4313502443A5039021048 @default.
- W4313502443 hasAuthorship W4313502443A5041339234 @default.
- W4313502443 hasAuthorship W4313502443A5068312095 @default.
- W4313502443 hasAuthorship W4313502443A5088284901 @default.
- W4313502443 hasBestOaLocation W43135024431 @default.
- W4313502443 hasConcept C105795698 @default.
- W4313502443 hasConcept C119857082 @default.