Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313502482> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4313502482 endingPage "54" @default.
- W4313502482 startingPage "54" @default.
- W4313502482 abstract "Condition assessment for critical infrastructure is a key factor for the wellbeing of the modern human. Especially for the electricity network, specific components such as oil-immersed power transformers need to be monitored for their operating condition. Classic approaches for the condition assessment of oil-immersed power transformers have been proposed in the past, such as the dissolved gases analysis and their respective concentration measurements for insulating oils. However, these approaches cannot always correctly (and in many cases not at all) classify the problems in power transformers. In the last two decades, novel approaches are implemented so as to address this problem, including artificial intelligence with neural networks being one form of algorithm. This paper focuses on the implementation of an adaptive number of layers and neural networks, aiming to increase the accuracy of the operating condition of oil-immersed power transformers. This paper also compares the use of various activation functions and different transfer functions other than the neural network implemented. The comparison incorporates the accuracy and total structure size of the neural network." @default.
- W4313502482 created "2023-01-06" @default.
- W4313502482 creator A5001290485 @default.
- W4313502482 creator A5074803624 @default.
- W4313502482 creator A5081160773 @default.
- W4313502482 creator A5086598863 @default.
- W4313502482 creator A5036752569 @default.
- W4313502482 date "2022-12-21" @default.
- W4313502482 modified "2023-09-30" @default.
- W4313502482 title "Condition Assessment of Power Transformers through DGA Measurements Evaluation Using Adaptive Algorithms and Deep Learning" @default.
- W4313502482 cites W1564945538 @default.
- W4313502482 cites W1968530169 @default.
- W4313502482 cites W2002731148 @default.
- W4313502482 cites W2096489301 @default.
- W4313502482 cites W2308505177 @default.
- W4313502482 cites W2566048193 @default.
- W4313502482 cites W2861440650 @default.
- W4313502482 cites W2920355041 @default.
- W4313502482 cites W2949690888 @default.
- W4313502482 cites W2956721024 @default.
- W4313502482 cites W3018229521 @default.
- W4313502482 cites W3121825017 @default.
- W4313502482 cites W3149749265 @default.
- W4313502482 cites W4205919191 @default.
- W4313502482 cites W4292313505 @default.
- W4313502482 cites W4294760524 @default.
- W4313502482 doi "https://doi.org/10.3390/en16010054" @default.
- W4313502482 hasPublicationYear "2022" @default.
- W4313502482 type Work @default.
- W4313502482 citedByCount "3" @default.
- W4313502482 countsByYear W43135024822023 @default.
- W4313502482 crossrefType "journal-article" @default.
- W4313502482 hasAuthorship W4313502482A5001290485 @default.
- W4313502482 hasAuthorship W4313502482A5036752569 @default.
- W4313502482 hasAuthorship W4313502482A5074803624 @default.
- W4313502482 hasAuthorship W4313502482A5081160773 @default.
- W4313502482 hasAuthorship W4313502482A5086598863 @default.
- W4313502482 hasBestOaLocation W43135024821 @default.
- W4313502482 hasConcept C11413529 @default.
- W4313502482 hasConcept C119599485 @default.
- W4313502482 hasConcept C119857082 @default.
- W4313502482 hasConcept C121332964 @default.
- W4313502482 hasConcept C127413603 @default.
- W4313502482 hasConcept C154945302 @default.
- W4313502482 hasConcept C163258240 @default.
- W4313502482 hasConcept C165801399 @default.
- W4313502482 hasConcept C181335627 @default.
- W4313502482 hasConcept C200601418 @default.
- W4313502482 hasConcept C206658404 @default.
- W4313502482 hasConcept C41008148 @default.
- W4313502482 hasConcept C50644808 @default.
- W4313502482 hasConcept C62520636 @default.
- W4313502482 hasConcept C66322947 @default.
- W4313502482 hasConcept C81818771 @default.
- W4313502482 hasConcept C89227174 @default.
- W4313502482 hasConceptScore W4313502482C11413529 @default.
- W4313502482 hasConceptScore W4313502482C119599485 @default.
- W4313502482 hasConceptScore W4313502482C119857082 @default.
- W4313502482 hasConceptScore W4313502482C121332964 @default.
- W4313502482 hasConceptScore W4313502482C127413603 @default.
- W4313502482 hasConceptScore W4313502482C154945302 @default.
- W4313502482 hasConceptScore W4313502482C163258240 @default.
- W4313502482 hasConceptScore W4313502482C165801399 @default.
- W4313502482 hasConceptScore W4313502482C181335627 @default.
- W4313502482 hasConceptScore W4313502482C200601418 @default.
- W4313502482 hasConceptScore W4313502482C206658404 @default.
- W4313502482 hasConceptScore W4313502482C41008148 @default.
- W4313502482 hasConceptScore W4313502482C50644808 @default.
- W4313502482 hasConceptScore W4313502482C62520636 @default.
- W4313502482 hasConceptScore W4313502482C66322947 @default.
- W4313502482 hasConceptScore W4313502482C81818771 @default.
- W4313502482 hasConceptScore W4313502482C89227174 @default.
- W4313502482 hasIssue "1" @default.
- W4313502482 hasLocation W43135024821 @default.
- W4313502482 hasLocation W43135024822 @default.
- W4313502482 hasOpenAccess W4313502482 @default.
- W4313502482 hasPrimaryLocation W43135024821 @default.
- W4313502482 hasRelatedWork W1571124305 @default.
- W4313502482 hasRelatedWork W191632763 @default.
- W4313502482 hasRelatedWork W1984538318 @default.
- W4313502482 hasRelatedWork W2122372740 @default.
- W4313502482 hasRelatedWork W2127761407 @default.
- W4313502482 hasRelatedWork W2746888278 @default.
- W4313502482 hasRelatedWork W3112117036 @default.
- W4313502482 hasRelatedWork W4296456612 @default.
- W4313502482 hasRelatedWork W4362579274 @default.
- W4313502482 hasRelatedWork W4379185040 @default.
- W4313502482 hasVolume "16" @default.
- W4313502482 isParatext "false" @default.
- W4313502482 isRetracted "false" @default.
- W4313502482 workType "article" @default.