Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313502578> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4313502578 endingPage "57" @default.
- W4313502578 startingPage "57" @default.
- W4313502578 abstract "The realization of load forecasting studies within the scope of forecasting periods varies depending on the application areas and estimation purposes. It is mainly carried out at three intervals: short-term, medium-term, and long-term. Short-term load forecasting (STLF) incorporates hour-ahead load forecasting, which is critical for dynamic data-driven smart power system applications. Nevertheless, based on our knowledge, there are not enough academic studies prepared with particular emphasis on this sub-topic, and none of the related studies evaluate STLF forecasting methods in this regard. As such, machine learning (ML) and deep learning (DL) architectures and forecasters have recently been successfully applied to STLF, and are state-of-the-art techniques in the energy forecasting area. Here, hour-ahead load forecasting methods, the majority of which are frequently preferred high-performing up-to-date methods in the literature, were first examined based on different forecasting techniques using two different aggregated-level datasets and observing the effects of these methods on both. Case and comparison studies have been conducted on these high-performing methods before, but there are not many examples studied using data from two different structures. Although the data used in this study were different from each other in terms of the time step, they also had very different and varied features. In addition, feature selection was studied on both datasets and a backward-eliminated exhaustive approach based on the performance of the artificial neural network (ANN) on the validation set was proposed for the development study of the forecasting models. A new DL-based ensemble approach was proposed after examining the results obtained on two separate datasets by applying the feature selection approach to the working forecasting methods, and the numerical results illustrate that it can significantly improve the forecasting performance compared with these up-to-date methods." @default.
- W4313502578 created "2023-01-06" @default.
- W4313502578 creator A5058236447 @default.
- W4313502578 date "2022-12-21" @default.
- W4313502578 modified "2023-09-30" @default.
- W4313502578 title "An Ensemble Deep-Learning-Based Model for Hour-Ahead Load Forecasting with a Feature Selection Approach: A Comparative Study with State-of-the-Art Methods" @default.
- W4313502578 cites W1977362693 @default.
- W4313502578 cites W2008406084 @default.
- W4313502578 cites W2032161710 @default.
- W4313502578 cites W2051630583 @default.
- W4313502578 cites W2082604374 @default.
- W4313502578 cites W2130985851 @default.
- W4313502578 cites W2165627882 @default.
- W4313502578 cites W2269227734 @default.
- W4313502578 cites W2269865911 @default.
- W4313502578 cites W2296609147 @default.
- W4313502578 cites W2738262461 @default.
- W4313502578 cites W2771979366 @default.
- W4313502578 cites W2782902016 @default.
- W4313502578 cites W2790204532 @default.
- W4313502578 cites W2809317444 @default.
- W4313502578 cites W2883144926 @default.
- W4313502578 cites W2888909529 @default.
- W4313502578 cites W2901273822 @default.
- W4313502578 cites W2920938851 @default.
- W4313502578 cites W2972001256 @default.
- W4313502578 cites W2972462266 @default.
- W4313502578 cites W3000821023 @default.
- W4313502578 cites W3004612331 @default.
- W4313502578 cites W3012839243 @default.
- W4313502578 cites W3015651876 @default.
- W4313502578 cites W3016724855 @default.
- W4313502578 cites W3017113651 @default.
- W4313502578 cites W3045571728 @default.
- W4313502578 cites W3047313329 @default.
- W4313502578 cites W3098805155 @default.
- W4313502578 cites W3134574975 @default.
- W4313502578 cites W3137224754 @default.
- W4313502578 cites W3164826854 @default.
- W4313502578 cites W3200743803 @default.
- W4313502578 cites W3209415817 @default.
- W4313502578 cites W4205474888 @default.
- W4313502578 cites W4206136739 @default.
- W4313502578 cites W4225287946 @default.
- W4313502578 cites W4280567399 @default.
- W4313502578 cites W4281813420 @default.
- W4313502578 doi "https://doi.org/10.3390/en16010057" @default.
- W4313502578 hasPublicationYear "2022" @default.
- W4313502578 type Work @default.
- W4313502578 citedByCount "0" @default.
- W4313502578 crossrefType "journal-article" @default.
- W4313502578 hasAuthorship W4313502578A5058236447 @default.
- W4313502578 hasBestOaLocation W43135025781 @default.
- W4313502578 hasConcept C108583219 @default.
- W4313502578 hasConcept C119857082 @default.
- W4313502578 hasConcept C121332964 @default.
- W4313502578 hasConcept C124101348 @default.
- W4313502578 hasConcept C138885662 @default.
- W4313502578 hasConcept C148483581 @default.
- W4313502578 hasConcept C154945302 @default.
- W4313502578 hasConcept C2776401178 @default.
- W4313502578 hasConcept C41008148 @default.
- W4313502578 hasConcept C41895202 @default.
- W4313502578 hasConcept C50644808 @default.
- W4313502578 hasConcept C61797465 @default.
- W4313502578 hasConcept C62520636 @default.
- W4313502578 hasConceptScore W4313502578C108583219 @default.
- W4313502578 hasConceptScore W4313502578C119857082 @default.
- W4313502578 hasConceptScore W4313502578C121332964 @default.
- W4313502578 hasConceptScore W4313502578C124101348 @default.
- W4313502578 hasConceptScore W4313502578C138885662 @default.
- W4313502578 hasConceptScore W4313502578C148483581 @default.
- W4313502578 hasConceptScore W4313502578C154945302 @default.
- W4313502578 hasConceptScore W4313502578C2776401178 @default.
- W4313502578 hasConceptScore W4313502578C41008148 @default.
- W4313502578 hasConceptScore W4313502578C41895202 @default.
- W4313502578 hasConceptScore W4313502578C50644808 @default.
- W4313502578 hasConceptScore W4313502578C61797465 @default.
- W4313502578 hasConceptScore W4313502578C62520636 @default.
- W4313502578 hasIssue "1" @default.
- W4313502578 hasLocation W43135025781 @default.
- W4313502578 hasLocation W43135025782 @default.
- W4313502578 hasOpenAccess W4313502578 @default.
- W4313502578 hasPrimaryLocation W43135025781 @default.
- W4313502578 hasRelatedWork W2795261237 @default.
- W4313502578 hasRelatedWork W3014300295 @default.
- W4313502578 hasRelatedWork W3164822677 @default.
- W4313502578 hasRelatedWork W4223943233 @default.
- W4313502578 hasRelatedWork W4225161397 @default.
- W4313502578 hasRelatedWork W4312200629 @default.
- W4313502578 hasRelatedWork W4360585206 @default.
- W4313502578 hasRelatedWork W4364306694 @default.
- W4313502578 hasRelatedWork W4380075502 @default.
- W4313502578 hasRelatedWork W4380086463 @default.
- W4313502578 hasVolume "16" @default.
- W4313502578 isParatext "false" @default.
- W4313502578 isRetracted "false" @default.
- W4313502578 workType "article" @default.