Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313502625> ?p ?o ?g. }
- W4313502625 endingPage "10" @default.
- W4313502625 startingPage "10" @default.
- W4313502625 abstract "Tea is a special economic crop that is widely distributed in tropical and subtropical areas. Timely and accurate access to the distribution of tea plantation areas is crucial for effective tea plantation supervision and sustainable agricultural development. Traditional methods for tea plantation extraction are highly dependent on feature engineering, which requires expensive human and material resources, and it is sometimes even difficult to achieve the expected results in terms of accuracy and robustness. To alleviate such problems, we took Xinchang County as the study area and proposed a method to extract tea plantations based on deep learning networks. Convolutional neural network (CNN) and recurrent neural network (RNN) modules were combined to build an R-CNN model that can automatically obtain both spatial and temporal information from multitemporal Sentinel-2 remote sensing images of tea plantations, and then the spatial distribution of tea plantations was predicted. To confirm the effectiveness of our method, support vector machine (SVM), random forest (RF), CNN, and RNN methods were used for comparative experiments. The results show that the R-CNN method has great potential in the tea plantation extraction task, with an F1 score and IoU of 0.885 and 0.793 on the test dataset, respectively. The overall classification accuracy and kappa coefficient for the whole region are 0.953 and 0.904, respectively, indicating that this method possesses higher extraction accuracy than the other four methods. In addition, we found that the distribution index of tea plantations in mountainous areas with gentle slopes is the highest in Xinchang County. This study can provide a reference basis for the fine mapping of tea plantation distributions." @default.
- W4313502625 created "2023-01-06" @default.
- W4313502625 creator A5012465032 @default.
- W4313502625 creator A5040786145 @default.
- W4313502625 creator A5071889634 @default.
- W4313502625 creator A5079928088 @default.
- W4313502625 date "2022-12-21" @default.
- W4313502625 modified "2023-10-14" @default.
- W4313502625 title "Extracting Tea Plantations from Multitemporal Sentinel-2 Images Based on Deep Learning Networks" @default.
- W4313502625 cites W1901129140 @default.
- W4313502625 cites W1903029394 @default.
- W4313502625 cites W1967197823 @default.
- W4313502625 cites W1998342250 @default.
- W4313502625 cites W2006069992 @default.
- W4313502625 cites W2056435747 @default.
- W4313502625 cites W2063623478 @default.
- W4313502625 cites W2064675550 @default.
- W4313502625 cites W2113410727 @default.
- W4313502625 cites W2560023338 @default.
- W4313502625 cites W2606788270 @default.
- W4313502625 cites W2614060139 @default.
- W4313502625 cites W2621121458 @default.
- W4313502625 cites W2737391801 @default.
- W4313502625 cites W2747398809 @default.
- W4313502625 cites W2783608381 @default.
- W4313502625 cites W2792827505 @default.
- W4313502625 cites W2803946774 @default.
- W4313502625 cites W2896998982 @default.
- W4313502625 cites W2900524290 @default.
- W4313502625 cites W2901788481 @default.
- W4313502625 cites W2903282641 @default.
- W4313502625 cites W2911964244 @default.
- W4313502625 cites W2920068501 @default.
- W4313502625 cites W2963131120 @default.
- W4313502625 cites W2972121931 @default.
- W4313502625 cites W2986339177 @default.
- W4313502625 cites W2988111912 @default.
- W4313502625 cites W3006025044 @default.
- W4313502625 cites W3014999631 @default.
- W4313502625 cites W3045743689 @default.
- W4313502625 cites W3049157029 @default.
- W4313502625 cites W3084666508 @default.
- W4313502625 cites W3091833522 @default.
- W4313502625 cites W3103964896 @default.
- W4313502625 cites W3114429882 @default.
- W4313502625 cites W3118513496 @default.
- W4313502625 cites W3136563782 @default.
- W4313502625 cites W3137034425 @default.
- W4313502625 cites W3185118158 @default.
- W4313502625 cites W4213300644 @default.
- W4313502625 cites W4224270952 @default.
- W4313502625 cites W4239510810 @default.
- W4313502625 cites W4284712030 @default.
- W4313502625 doi "https://doi.org/10.3390/agriculture13010010" @default.
- W4313502625 hasPublicationYear "2022" @default.
- W4313502625 type Work @default.
- W4313502625 citedByCount "1" @default.
- W4313502625 countsByYear W43135026252023 @default.
- W4313502625 crossrefType "journal-article" @default.
- W4313502625 hasAuthorship W4313502625A5012465032 @default.
- W4313502625 hasAuthorship W4313502625A5040786145 @default.
- W4313502625 hasAuthorship W4313502625A5071889634 @default.
- W4313502625 hasAuthorship W4313502625A5079928088 @default.
- W4313502625 hasBestOaLocation W43135026251 @default.
- W4313502625 hasConcept C104317684 @default.
- W4313502625 hasConcept C108583219 @default.
- W4313502625 hasConcept C119857082 @default.
- W4313502625 hasConcept C12267149 @default.
- W4313502625 hasConcept C153180895 @default.
- W4313502625 hasConcept C154945302 @default.
- W4313502625 hasConcept C166957645 @default.
- W4313502625 hasConcept C169258074 @default.
- W4313502625 hasConcept C185592680 @default.
- W4313502625 hasConcept C205649164 @default.
- W4313502625 hasConcept C2780332020 @default.
- W4313502625 hasConcept C41008148 @default.
- W4313502625 hasConcept C50644808 @default.
- W4313502625 hasConcept C52622490 @default.
- W4313502625 hasConcept C55493867 @default.
- W4313502625 hasConcept C62649853 @default.
- W4313502625 hasConcept C63479239 @default.
- W4313502625 hasConcept C81363708 @default.
- W4313502625 hasConceptScore W4313502625C104317684 @default.
- W4313502625 hasConceptScore W4313502625C108583219 @default.
- W4313502625 hasConceptScore W4313502625C119857082 @default.
- W4313502625 hasConceptScore W4313502625C12267149 @default.
- W4313502625 hasConceptScore W4313502625C153180895 @default.
- W4313502625 hasConceptScore W4313502625C154945302 @default.
- W4313502625 hasConceptScore W4313502625C166957645 @default.
- W4313502625 hasConceptScore W4313502625C169258074 @default.
- W4313502625 hasConceptScore W4313502625C185592680 @default.
- W4313502625 hasConceptScore W4313502625C205649164 @default.
- W4313502625 hasConceptScore W4313502625C2780332020 @default.
- W4313502625 hasConceptScore W4313502625C41008148 @default.
- W4313502625 hasConceptScore W4313502625C50644808 @default.
- W4313502625 hasConceptScore W4313502625C52622490 @default.
- W4313502625 hasConceptScore W4313502625C55493867 @default.
- W4313502625 hasConceptScore W4313502625C62649853 @default.