Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313502897> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4313502897 endingPage "5" @default.
- W4313502897 startingPage "5" @default.
- W4313502897 abstract "In this work, we have proposed a novel methodology for greenhouse tomato yield prediction, which is based on a hybrid of an explanatory biophysical model—the Tomgro model, and a machine learning model called CNN-RNN. The Tomgro and CNN-RNN models are calibrated/trained for predicting tomato yields while different fusion approaches (linear, Bayesian, neural network, random forest and gradient boosting) are exploited for fusing the prediction result of individual models for obtaining the final prediction results. The experimental results have shown that the model fusion approach achieves more accurate prediction results than the explanatory biophysical model or the machine learning model. Moreover, out of different model fusion approaches, the neural network one produced the most accurate tomato prediction results, with means and standard deviations of root mean square error (RMSE), r2-coefficient, Nash-Sutcliffe efficiency (NSE) and percent bias (PBIAS) being 17.69 ± 3.47 g/m2, 0.9995 ± 0.0002, 0.9989 ± 0.0004 and 0.1791 ± 0.6837, respectively." @default.
- W4313502897 created "2023-01-06" @default.
- W4313502897 creator A5001457450 @default.
- W4313502897 creator A5018447003 @default.
- W4313502897 creator A5029956297 @default.
- W4313502897 creator A5044367644 @default.
- W4313502897 creator A5063605366 @default.
- W4313502897 date "2022-12-20" @default.
- W4313502897 modified "2023-09-30" @default.
- W4313502897 title "A Novel Model Fusion Approach for Greenhouse Crop Yield Prediction" @default.
- W4313502897 cites W1991092346 @default.
- W4313502897 cites W2024879278 @default.
- W4313502897 cites W2028633948 @default.
- W4313502897 cites W2032977879 @default.
- W4313502897 cites W2064442089 @default.
- W4313502897 cites W2097609876 @default.
- W4313502897 cites W2139422799 @default.
- W4313502897 cites W2172213450 @default.
- W4313502897 cites W2885195348 @default.
- W4313502897 cites W2916373210 @default.
- W4313502897 cites W2979517792 @default.
- W4313502897 cites W2996542059 @default.
- W4313502897 cites W3100777112 @default.
- W4313502897 cites W3109140284 @default.
- W4313502897 cites W3127482459 @default.
- W4313502897 cites W3174658031 @default.
- W4313502897 doi "https://doi.org/10.3390/horticulturae9010005" @default.
- W4313502897 hasPublicationYear "2022" @default.
- W4313502897 type Work @default.
- W4313502897 citedByCount "1" @default.
- W4313502897 countsByYear W43135028972023 @default.
- W4313502897 crossrefType "journal-article" @default.
- W4313502897 hasAuthorship W4313502897A5001457450 @default.
- W4313502897 hasAuthorship W4313502897A5018447003 @default.
- W4313502897 hasAuthorship W4313502897A5029956297 @default.
- W4313502897 hasAuthorship W4313502897A5044367644 @default.
- W4313502897 hasAuthorship W4313502897A5063605366 @default.
- W4313502897 hasBestOaLocation W43135028971 @default.
- W4313502897 hasConcept C105795698 @default.
- W4313502897 hasConcept C107673813 @default.
- W4313502897 hasConcept C119857082 @default.
- W4313502897 hasConcept C126343540 @default.
- W4313502897 hasConcept C138885662 @default.
- W4313502897 hasConcept C139945424 @default.
- W4313502897 hasConcept C154945302 @default.
- W4313502897 hasConcept C158525013 @default.
- W4313502897 hasConcept C169258074 @default.
- W4313502897 hasConcept C32198211 @default.
- W4313502897 hasConcept C33923547 @default.
- W4313502897 hasConcept C41008148 @default.
- W4313502897 hasConcept C41895202 @default.
- W4313502897 hasConcept C45804977 @default.
- W4313502897 hasConcept C46686674 @default.
- W4313502897 hasConcept C50644808 @default.
- W4313502897 hasConcept C6557445 @default.
- W4313502897 hasConcept C70153297 @default.
- W4313502897 hasConcept C86803240 @default.
- W4313502897 hasConceptScore W4313502897C105795698 @default.
- W4313502897 hasConceptScore W4313502897C107673813 @default.
- W4313502897 hasConceptScore W4313502897C119857082 @default.
- W4313502897 hasConceptScore W4313502897C126343540 @default.
- W4313502897 hasConceptScore W4313502897C138885662 @default.
- W4313502897 hasConceptScore W4313502897C139945424 @default.
- W4313502897 hasConceptScore W4313502897C154945302 @default.
- W4313502897 hasConceptScore W4313502897C158525013 @default.
- W4313502897 hasConceptScore W4313502897C169258074 @default.
- W4313502897 hasConceptScore W4313502897C32198211 @default.
- W4313502897 hasConceptScore W4313502897C33923547 @default.
- W4313502897 hasConceptScore W4313502897C41008148 @default.
- W4313502897 hasConceptScore W4313502897C41895202 @default.
- W4313502897 hasConceptScore W4313502897C45804977 @default.
- W4313502897 hasConceptScore W4313502897C46686674 @default.
- W4313502897 hasConceptScore W4313502897C50644808 @default.
- W4313502897 hasConceptScore W4313502897C6557445 @default.
- W4313502897 hasConceptScore W4313502897C70153297 @default.
- W4313502897 hasConceptScore W4313502897C86803240 @default.
- W4313502897 hasIssue "1" @default.
- W4313502897 hasLocation W43135028971 @default.
- W4313502897 hasLocation W43135028972 @default.
- W4313502897 hasLocation W43135028973 @default.
- W4313502897 hasOpenAccess W4313502897 @default.
- W4313502897 hasPrimaryLocation W43135028971 @default.
- W4313502897 hasRelatedWork W3100297620 @default.
- W4313502897 hasRelatedWork W3158750420 @default.
- W4313502897 hasRelatedWork W3177321454 @default.
- W4313502897 hasRelatedWork W3208169454 @default.
- W4313502897 hasRelatedWork W3211193619 @default.
- W4313502897 hasRelatedWork W4226117484 @default.
- W4313502897 hasRelatedWork W4234083246 @default.
- W4313502897 hasRelatedWork W4281887347 @default.
- W4313502897 hasRelatedWork W4379536929 @default.
- W4313502897 hasRelatedWork W4382701299 @default.
- W4313502897 hasVolume "9" @default.
- W4313502897 isParatext "false" @default.
- W4313502897 isRetracted "false" @default.
- W4313502897 workType "article" @default.