Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313503043> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4313503043 endingPage "2433" @default.
- W4313503043 startingPage "2417" @default.
- W4313503043 abstract "Because stress has such a powerful impact on human health, we must be able to identify it automatically in our everyday lives. The human activity recognition (HAR) system use data from several kinds of sensors to try to recognize and evaluate human actions automatically recognize and evaluate human actions. Using the multimodal dataset DEAP (Database for Emotion Analysis using Physiological Signals), this paper presents deep learning (DL) technique for effectively detecting human stress. The combination of vision-based and sensor-based approaches for recognizing human stress will help us achieve the increased efficiency of current stress recognition systems and predict probable actions in advance of when fatal. Based on visual and EEG (Electroencephalogram) data, this research aims to enhance the performance and extract the dominating characteristics of stress detection. For the stress identification test, we utilized the DEAP dataset, which included video and EEG data. We also demonstrate that combining video and EEG characteristics may increase overall performance, with the suggested stochastic features providing the most accurate results. In the first step, CNN (Convolutional Neural Network) extracts feature vectors from video frames and EEG data. Feature Level (FL) fusion that combines the features extracted from video and EEG data. We use XGBoost as our classifier model to predict stress, and we put it into action. The stress recognition accuracy of the proposed method is compared to existing methods of Decision Tree (DT), Random Forest (RF), AdaBoost, Linear Discriminant Analysis (LDA), and K-Nearest Neighborhood (KNN). When we compared our technique to existing state-of-the-art approaches, we found that the suggested DL methodology combining multimodal and heterogeneous inputs may improve stress identification." @default.
- W4313503043 created "2023-01-06" @default.
- W4313503043 creator A5034712055 @default.
- W4313503043 creator A5073063914 @default.
- W4313503043 date "2023-01-01" @default.
- W4313503043 modified "2023-09-27" @default.
- W4313503043 title "Human Stress Recognition by Correlating Vision and EEG Data" @default.
- W4313503043 cites W1551545792 @default.
- W4313503043 cites W1567784974 @default.
- W4313503043 cites W2002055708 @default.
- W4313503043 cites W2017634428 @default.
- W4313503043 cites W2021723318 @default.
- W4313503043 cites W2054780155 @default.
- W4313503043 cites W2103388129 @default.
- W4313503043 cites W2126868529 @default.
- W4313503043 cites W2145576843 @default.
- W4313503043 cites W2155268664 @default.
- W4313503043 cites W2563752936 @default.
- W4313503043 cites W2891457579 @default.
- W4313503043 cites W2898589980 @default.
- W4313503043 cites W2925158564 @default.
- W4313503043 cites W2982163280 @default.
- W4313503043 cites W3005396609 @default.
- W4313503043 cites W3020653641 @default.
- W4313503043 cites W3022222380 @default.
- W4313503043 cites W3042998831 @default.
- W4313503043 cites W3086233077 @default.
- W4313503043 cites W3089563032 @default.
- W4313503043 cites W3139161881 @default.
- W4313503043 doi "https://doi.org/10.32604/csse.2023.032480" @default.
- W4313503043 hasPublicationYear "2023" @default.
- W4313503043 type Work @default.
- W4313503043 citedByCount "0" @default.
- W4313503043 crossrefType "journal-article" @default.
- W4313503043 hasAuthorship W4313503043A5034712055 @default.
- W4313503043 hasAuthorship W4313503043A5073063914 @default.
- W4313503043 hasBestOaLocation W43135030431 @default.
- W4313503043 hasConcept C118552586 @default.
- W4313503043 hasConcept C119857082 @default.
- W4313503043 hasConcept C12267149 @default.
- W4313503043 hasConcept C138885662 @default.
- W4313503043 hasConcept C141404830 @default.
- W4313503043 hasConcept C153180895 @default.
- W4313503043 hasConcept C154945302 @default.
- W4313503043 hasConcept C15744967 @default.
- W4313503043 hasConcept C169258074 @default.
- W4313503043 hasConcept C2776401178 @default.
- W4313503043 hasConcept C28490314 @default.
- W4313503043 hasConcept C41008148 @default.
- W4313503043 hasConcept C41895202 @default.
- W4313503043 hasConcept C522805319 @default.
- W4313503043 hasConcept C52622490 @default.
- W4313503043 hasConcept C69738355 @default.
- W4313503043 hasConcept C81363708 @default.
- W4313503043 hasConcept C84525736 @default.
- W4313503043 hasConcept C95623464 @default.
- W4313503043 hasConceptScore W4313503043C118552586 @default.
- W4313503043 hasConceptScore W4313503043C119857082 @default.
- W4313503043 hasConceptScore W4313503043C12267149 @default.
- W4313503043 hasConceptScore W4313503043C138885662 @default.
- W4313503043 hasConceptScore W4313503043C141404830 @default.
- W4313503043 hasConceptScore W4313503043C153180895 @default.
- W4313503043 hasConceptScore W4313503043C154945302 @default.
- W4313503043 hasConceptScore W4313503043C15744967 @default.
- W4313503043 hasConceptScore W4313503043C169258074 @default.
- W4313503043 hasConceptScore W4313503043C2776401178 @default.
- W4313503043 hasConceptScore W4313503043C28490314 @default.
- W4313503043 hasConceptScore W4313503043C41008148 @default.
- W4313503043 hasConceptScore W4313503043C41895202 @default.
- W4313503043 hasConceptScore W4313503043C522805319 @default.
- W4313503043 hasConceptScore W4313503043C52622490 @default.
- W4313503043 hasConceptScore W4313503043C69738355 @default.
- W4313503043 hasConceptScore W4313503043C81363708 @default.
- W4313503043 hasConceptScore W4313503043C84525736 @default.
- W4313503043 hasConceptScore W4313503043C95623464 @default.
- W4313503043 hasIssue "3" @default.
- W4313503043 hasLocation W43135030431 @default.
- W4313503043 hasOpenAccess W4313503043 @default.
- W4313503043 hasPrimaryLocation W43135030431 @default.
- W4313503043 hasRelatedWork W1996541855 @default.
- W4313503043 hasRelatedWork W2146076056 @default.
- W4313503043 hasRelatedWork W2811390910 @default.
- W4313503043 hasRelatedWork W3204641204 @default.
- W4313503043 hasRelatedWork W4283313480 @default.
- W4313503043 hasRelatedWork W4296081764 @default.
- W4313503043 hasRelatedWork W4321636153 @default.
- W4313503043 hasRelatedWork W4377964522 @default.
- W4313503043 hasRelatedWork W4381414210 @default.
- W4313503043 hasRelatedWork W4386072274 @default.
- W4313503043 hasVolume "45" @default.
- W4313503043 isParatext "false" @default.
- W4313503043 isRetracted "false" @default.
- W4313503043 workType "article" @default.