Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313503058> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4313503058 endingPage "3052" @default.
- W4313503058 startingPage "3037" @default.
- W4313503058 abstract "Recent developments in computer networks and Internet of Things (IoT) have enabled easy access to data. But the government and business sectors face several difficulties in resolving cybersecurity network issues, like novel attacks, hackers, internet criminals, and so on. Presently, malware attacks and software piracy pose serious risks in compromising the security of IoT. They can steal confidential data which results in financial and reputational losses. The advent of machine learning (ML) and deep learning (DL) models has been employed to accomplish security in the IoT cloud environment. This article presents an Enhanced Artificial Gorilla Troops Optimizer with Deep Learning Enabled Cybersecurity Threat Detection (EAGTODL-CTD) in IoT Cloud Networks. The presented EAGTODL-CTD model encompasses the identification of the threats in the IoT cloud environment. The proposed EAGTODL-CTD model mainly focuses on the conversion of input binary files to color images, where the malware can be detected using an image classification problem. The EAGTODL-CTD model pre-processes the input data to transform to a compatible format. For threat detection and classification, cascaded gated recurrent unit (CGRU) model is exploited to determine class labels. Finally, EAGTO approach is employed as a hyperparameter optimizer to tune the CGRU parameters, showing the novelty of our work. The performance evaluation of the EAGTODL-CTD model is assessed on a dataset comprising two class labels namely malignant and benign. The experimental values reported the supremacy of the EAGTODL-CTD model with increased accuracy of 99.47%." @default.
- W4313503058 created "2023-01-06" @default.
- W4313503058 creator A5000166233 @default.
- W4313503058 creator A5017954908 @default.
- W4313503058 creator A5045237877 @default.
- W4313503058 creator A5054039954 @default.
- W4313503058 creator A5072745905 @default.
- W4313503058 creator A5075089683 @default.
- W4313503058 creator A5079417472 @default.
- W4313503058 creator A5080484865 @default.
- W4313503058 date "2023-01-01" @default.
- W4313503058 modified "2023-10-16" @default.
- W4313503058 title "Enhanced Gorilla Troops Optimizer with Deep Learning Enabled Cybersecurity Threat Detection" @default.
- W4313503058 cites W2913497771 @default.
- W4313503058 cites W2972189363 @default.
- W4313503058 cites W3010102451 @default.
- W4313503058 cites W3033587968 @default.
- W4313503058 cites W3038024393 @default.
- W4313503058 cites W3043799819 @default.
- W4313503058 cites W3086579950 @default.
- W4313503058 cites W3099027680 @default.
- W4313503058 cites W3128910312 @default.
- W4313503058 cites W3185076117 @default.
- W4313503058 cites W3206894072 @default.
- W4313503058 cites W4205136287 @default.
- W4313503058 cites W4205922727 @default.
- W4313503058 cites W4210277846 @default.
- W4313503058 cites W4213415064 @default.
- W4313503058 cites W4226291538 @default.
- W4313503058 cites W4282032734 @default.
- W4313503058 doi "https://doi.org/10.32604/csse.2023.033970" @default.
- W4313503058 hasPublicationYear "2023" @default.
- W4313503058 type Work @default.
- W4313503058 citedByCount "0" @default.
- W4313503058 crossrefType "journal-article" @default.
- W4313503058 hasAuthorship W4313503058A5000166233 @default.
- W4313503058 hasAuthorship W4313503058A5017954908 @default.
- W4313503058 hasAuthorship W4313503058A5045237877 @default.
- W4313503058 hasAuthorship W4313503058A5054039954 @default.
- W4313503058 hasAuthorship W4313503058A5072745905 @default.
- W4313503058 hasAuthorship W4313503058A5075089683 @default.
- W4313503058 hasAuthorship W4313503058A5079417472 @default.
- W4313503058 hasAuthorship W4313503058A5080484865 @default.
- W4313503058 hasBestOaLocation W43135030581 @default.
- W4313503058 hasConcept C108583219 @default.
- W4313503058 hasConcept C111919701 @default.
- W4313503058 hasConcept C119857082 @default.
- W4313503058 hasConcept C121332964 @default.
- W4313503058 hasConcept C154945302 @default.
- W4313503058 hasConcept C165696696 @default.
- W4313503058 hasConcept C2779585090 @default.
- W4313503058 hasConcept C38652104 @default.
- W4313503058 hasConcept C41008148 @default.
- W4313503058 hasConcept C541664917 @default.
- W4313503058 hasConcept C79974875 @default.
- W4313503058 hasConcept C97355855 @default.
- W4313503058 hasConceptScore W4313503058C108583219 @default.
- W4313503058 hasConceptScore W4313503058C111919701 @default.
- W4313503058 hasConceptScore W4313503058C119857082 @default.
- W4313503058 hasConceptScore W4313503058C121332964 @default.
- W4313503058 hasConceptScore W4313503058C154945302 @default.
- W4313503058 hasConceptScore W4313503058C165696696 @default.
- W4313503058 hasConceptScore W4313503058C2779585090 @default.
- W4313503058 hasConceptScore W4313503058C38652104 @default.
- W4313503058 hasConceptScore W4313503058C41008148 @default.
- W4313503058 hasConceptScore W4313503058C541664917 @default.
- W4313503058 hasConceptScore W4313503058C79974875 @default.
- W4313503058 hasConceptScore W4313503058C97355855 @default.
- W4313503058 hasIssue "3" @default.
- W4313503058 hasLocation W43135030581 @default.
- W4313503058 hasOpenAccess W4313503058 @default.
- W4313503058 hasPrimaryLocation W43135030581 @default.
- W4313503058 hasRelatedWork W2053293719 @default.
- W4313503058 hasRelatedWork W2594153842 @default.
- W4313503058 hasRelatedWork W2900235625 @default.
- W4313503058 hasRelatedWork W2968586400 @default.
- W4313503058 hasRelatedWork W3083187169 @default.
- W4313503058 hasRelatedWork W4223943233 @default.
- W4313503058 hasRelatedWork W4312200629 @default.
- W4313503058 hasRelatedWork W4360585206 @default.
- W4313503058 hasRelatedWork W4366249425 @default.
- W4313503058 hasRelatedWork W4380075502 @default.
- W4313503058 hasVolume "45" @default.
- W4313503058 isParatext "false" @default.
- W4313503058 isRetracted "false" @default.
- W4313503058 workType "article" @default.