Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313503206> ?p ?o ?g. }
- W4313503206 endingPage "1" @default.
- W4313503206 startingPage "1" @default.
- W4313503206 abstract "The growth of the Internet of Things (IoT) has accelerated digital transformation processes in organizations and cities. However, it has also opened new security challenges due to the complexity and dynamism of these systems. The application of security risk analysis methodologies used to evaluate information technology (IT) systems have their limitations to qualitatively assess the security risks in IoT systems, due to the lack of historical data and the dynamic behavior of the solutions based on the IoT. The objective of this study is to propose a methodology for developing a security risk analysis using scenarios based on the risk factors of IoT devices. In order to manage the uncertainty due to the dynamics of IoT behaviors, we propose the use of Bayesian networks in conjunction with the Best Worst Method (BWM) for multi-criteria decision-making to obtain a quantitative security risk value." @default.
- W4313503206 created "2023-01-06" @default.
- W4313503206 creator A5012284576 @default.
- W4313503206 creator A5012535754 @default.
- W4313503206 creator A5027384976 @default.
- W4313503206 creator A5082952462 @default.
- W4313503206 creator A5085764846 @default.
- W4313503206 date "2022-12-20" @default.
- W4313503206 modified "2023-10-14" @default.
- W4313503206 title "Defining Cyber Risk Scenarios to Evaluate IoT Systems" @default.
- W4313503206 cites W1557976950 @default.
- W4313503206 cites W2010729982 @default.
- W4313503206 cites W2053784030 @default.
- W4313503206 cites W2105594594 @default.
- W4313503206 cites W2157510881 @default.
- W4313503206 cites W2274838494 @default.
- W4313503206 cites W2501931341 @default.
- W4313503206 cites W2518867420 @default.
- W4313503206 cites W2556210505 @default.
- W4313503206 cites W2568233590 @default.
- W4313503206 cites W2622330081 @default.
- W4313503206 cites W2765472318 @default.
- W4313503206 cites W2800686694 @default.
- W4313503206 cites W2803911175 @default.
- W4313503206 cites W2912783820 @default.
- W4313503206 cites W2919160163 @default.
- W4313503206 cites W2922525752 @default.
- W4313503206 cites W2933915278 @default.
- W4313503206 cites W2937815062 @default.
- W4313503206 cites W2941898360 @default.
- W4313503206 cites W2945329049 @default.
- W4313503206 cites W2947197489 @default.
- W4313503206 cites W2951656968 @default.
- W4313503206 cites W2963654300 @default.
- W4313503206 cites W2971893958 @default.
- W4313503206 cites W2978037049 @default.
- W4313503206 cites W3013001971 @default.
- W4313503206 cites W3032033268 @default.
- W4313503206 cites W3081135380 @default.
- W4313503206 cites W3087986304 @default.
- W4313503206 cites W3099148642 @default.
- W4313503206 cites W3109950597 @default.
- W4313503206 cites W3119657649 @default.
- W4313503206 cites W3128699734 @default.
- W4313503206 cites W3137260098 @default.
- W4313503206 cites W3138046593 @default.
- W4313503206 cites W3151540024 @default.
- W4313503206 cites W3161021258 @default.
- W4313503206 cites W3162486746 @default.
- W4313503206 cites W3172479169 @default.
- W4313503206 cites W3199689262 @default.
- W4313503206 cites W3203374901 @default.
- W4313503206 cites W3203436613 @default.
- W4313503206 cites W3209062538 @default.
- W4313503206 cites W3211071450 @default.
- W4313503206 cites W3214188816 @default.
- W4313503206 cites W4200182691 @default.
- W4313503206 cites W4200346980 @default.
- W4313503206 cites W4200551888 @default.
- W4313503206 cites W4205825860 @default.
- W4313503206 doi "https://doi.org/10.3390/g14010001" @default.
- W4313503206 hasPublicationYear "2022" @default.
- W4313503206 type Work @default.
- W4313503206 citedByCount "1" @default.
- W4313503206 countsByYear W43135032062023 @default.
- W4313503206 crossrefType "journal-article" @default.
- W4313503206 hasAuthorship W4313503206A5012284576 @default.
- W4313503206 hasAuthorship W4313503206A5012535754 @default.
- W4313503206 hasAuthorship W4313503206A5027384976 @default.
- W4313503206 hasAuthorship W4313503206A5082952462 @default.
- W4313503206 hasAuthorship W4313503206A5085764846 @default.
- W4313503206 hasBestOaLocation W43135032061 @default.
- W4313503206 hasConcept C10138342 @default.
- W4313503206 hasConcept C112930515 @default.
- W4313503206 hasConcept C121332964 @default.
- W4313503206 hasConcept C144133560 @default.
- W4313503206 hasConcept C182306322 @default.
- W4313503206 hasConcept C2522767166 @default.
- W4313503206 hasConcept C2775836275 @default.
- W4313503206 hasConcept C38652104 @default.
- W4313503206 hasConcept C41008148 @default.
- W4313503206 hasConcept C62520636 @default.
- W4313503206 hasConcept C81860439 @default.
- W4313503206 hasConceptScore W4313503206C10138342 @default.
- W4313503206 hasConceptScore W4313503206C112930515 @default.
- W4313503206 hasConceptScore W4313503206C121332964 @default.
- W4313503206 hasConceptScore W4313503206C144133560 @default.
- W4313503206 hasConceptScore W4313503206C182306322 @default.
- W4313503206 hasConceptScore W4313503206C2522767166 @default.
- W4313503206 hasConceptScore W4313503206C2775836275 @default.
- W4313503206 hasConceptScore W4313503206C38652104 @default.
- W4313503206 hasConceptScore W4313503206C41008148 @default.
- W4313503206 hasConceptScore W4313503206C62520636 @default.
- W4313503206 hasConceptScore W4313503206C81860439 @default.
- W4313503206 hasIssue "1" @default.
- W4313503206 hasLocation W43135032061 @default.
- W4313503206 hasLocation W43135032062 @default.
- W4313503206 hasOpenAccess W4313503206 @default.