Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313503213> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4313503213 endingPage "17" @default.
- W4313503213 startingPage "17" @default.
- W4313503213 abstract "With the rapid growth of the aviation fields, the remaining useful life (RUL) estimation of aero-engine has become the focus of the industry. Due to the shortage of existing prediction methods, life prediction is stuck in a bottleneck. Aiming at the low efficiency of traditional estimation algorithms, a more efficient neural network is proposed by using Convolutional Neural Networks (CNN) to replace Long-Short Term Memory (LSTM). Firstly, multi-sensor degenerate information fusion coding is realized with the convolutional autoencoder (CAE). Then, the temporal convolutional network (TCN) is applied to achieve efficient prediction with the obtained degradation code. It does not depend on the iteration along time, but learning the causality through a mask. Moreover, the data processing is improved to further improve the application efficiency of the algorithm. ExtraTreesClassifier is applied to recognize when the failure first develops. This step can not only assist labelling, but also realize feature filtering combined with tree model interpretation. For multiple operation conditions, new features are clustered by K-means++ to encode historical condition information. Finally, an experiment is carried out to evaluate the effectiveness on the Commercial Modular Aero-Propulsion System Simulation (CMAPSS) datasets provided by the National Aeronautics and Space Administration (NASA). The results show that the proposed algorithm can ensure high-precision prediction and effectively improve the efficiency." @default.
- W4313503213 created "2023-01-06" @default.
- W4313503213 creator A5004003101 @default.
- W4313503213 creator A5032541824 @default.
- W4313503213 creator A5032764121 @default.
- W4313503213 creator A5037015805 @default.
- W4313503213 creator A5040015419 @default.
- W4313503213 creator A5043000714 @default.
- W4313503213 date "2022-12-20" @default.
- W4313503213 modified "2023-09-27" @default.
- W4313503213 title "Aero-Engine Remaining Useful Life Estimation Based on CAE-TCN Neural Networks" @default.
- W4313503213 cites W1992113394 @default.
- W4313503213 cites W2017257315 @default.
- W4313503213 cites W2042492924 @default.
- W4313503213 cites W2094962800 @default.
- W4313503213 cites W2110787940 @default.
- W4313503213 cites W2120841219 @default.
- W4313503213 cites W2134456669 @default.
- W4313503213 cites W2187422466 @default.
- W4313503213 cites W2221633010 @default.
- W4313503213 cites W2291961022 @default.
- W4313503213 cites W2324044936 @default.
- W4313503213 cites W2461729787 @default.
- W4313503213 cites W2471161958 @default.
- W4313503213 cites W2473294140 @default.
- W4313503213 cites W2544905596 @default.
- W4313503213 cites W2617137613 @default.
- W4313503213 cites W2772084711 @default.
- W4313503213 cites W2896877450 @default.
- W4313503213 cites W350034163 @default.
- W4313503213 doi "https://doi.org/10.3390/app13010017" @default.
- W4313503213 hasPublicationYear "2022" @default.
- W4313503213 type Work @default.
- W4313503213 citedByCount "0" @default.
- W4313503213 crossrefType "journal-article" @default.
- W4313503213 hasAuthorship W4313503213A5004003101 @default.
- W4313503213 hasAuthorship W4313503213A5032541824 @default.
- W4313503213 hasAuthorship W4313503213A5032764121 @default.
- W4313503213 hasAuthorship W4313503213A5037015805 @default.
- W4313503213 hasAuthorship W4313503213A5040015419 @default.
- W4313503213 hasAuthorship W4313503213A5043000714 @default.
- W4313503213 hasBestOaLocation W43135032131 @default.
- W4313503213 hasConcept C101738243 @default.
- W4313503213 hasConcept C104317684 @default.
- W4313503213 hasConcept C119857082 @default.
- W4313503213 hasConcept C124101348 @default.
- W4313503213 hasConcept C149635348 @default.
- W4313503213 hasConcept C154945302 @default.
- W4313503213 hasConcept C185592680 @default.
- W4313503213 hasConcept C2780513914 @default.
- W4313503213 hasConcept C41008148 @default.
- W4313503213 hasConcept C50644808 @default.
- W4313503213 hasConcept C55493867 @default.
- W4313503213 hasConcept C66746571 @default.
- W4313503213 hasConcept C81363708 @default.
- W4313503213 hasConceptScore W4313503213C101738243 @default.
- W4313503213 hasConceptScore W4313503213C104317684 @default.
- W4313503213 hasConceptScore W4313503213C119857082 @default.
- W4313503213 hasConceptScore W4313503213C124101348 @default.
- W4313503213 hasConceptScore W4313503213C149635348 @default.
- W4313503213 hasConceptScore W4313503213C154945302 @default.
- W4313503213 hasConceptScore W4313503213C185592680 @default.
- W4313503213 hasConceptScore W4313503213C2780513914 @default.
- W4313503213 hasConceptScore W4313503213C41008148 @default.
- W4313503213 hasConceptScore W4313503213C50644808 @default.
- W4313503213 hasConceptScore W4313503213C55493867 @default.
- W4313503213 hasConceptScore W4313503213C66746571 @default.
- W4313503213 hasConceptScore W4313503213C81363708 @default.
- W4313503213 hasIssue "1" @default.
- W4313503213 hasLocation W43135032131 @default.
- W4313503213 hasOpenAccess W4313503213 @default.
- W4313503213 hasPrimaryLocation W43135032131 @default.
- W4313503213 hasRelatedWork W2354251581 @default.
- W4313503213 hasRelatedWork W2357461155 @default.
- W4313503213 hasRelatedWork W2384129116 @default.
- W4313503213 hasRelatedWork W3021430260 @default.
- W4313503213 hasRelatedWork W3027997911 @default.
- W4313503213 hasRelatedWork W4220775285 @default.
- W4313503213 hasRelatedWork W4287083450 @default.
- W4313503213 hasRelatedWork W4287776258 @default.
- W4313503213 hasRelatedWork W4327928486 @default.
- W4313503213 hasRelatedWork W4384300587 @default.
- W4313503213 hasVolume "13" @default.
- W4313503213 isParatext "false" @default.
- W4313503213 isRetracted "false" @default.
- W4313503213 workType "article" @default.