Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313503250> ?p ?o ?g. }
- W4313503250 endingPage "12" @default.
- W4313503250 startingPage "12" @default.
- W4313503250 abstract "Cancer remains a deadly disease. We developed a lightweight, accurate, general-purpose deep learning algorithm for skin cancer classification. Squeeze-MNet combines a Squeeze algorithm for digital hair removal during preprocessing and a MobileNet deep learning model with predefined weights. The Squeeze algorithm extracts important image features from the image, and the black-hat filter operation removes noise. The MobileNet model (with a dense neural network) was developed using the International Skin Imaging Collaboration (ISIC) dataset to fine-tune the model. The proposed model is lightweight; the prototype was tested on a Raspberry Pi 4 Internet of Things device with a Neo pixel 8-bit LED ring; a medical doctor validated the device. The average precision (AP) for benign and malignant diagnoses was 99.76% and 98.02%, respectively. Using our approach, the required dataset size decreased by 66%. The hair removal algorithm increased the accuracy of skin cancer detection to 99.36% with the ISIC dataset. The area under the receiver operating curve was 98.9%." @default.
- W4313503250 created "2023-01-06" @default.
- W4313503250 creator A5016293539 @default.
- W4313503250 creator A5027530257 @default.
- W4313503250 creator A5034891317 @default.
- W4313503250 creator A5040687550 @default.
- W4313503250 creator A5049915833 @default.
- W4313503250 creator A5076158780 @default.
- W4313503250 creator A5086912404 @default.
- W4313503250 date "2022-12-20" @default.
- W4313503250 modified "2023-09-30" @default.
- W4313503250 title "Squeeze-MNet: Precise Skin Cancer Detection Model for Low Computing IoT Devices Using Transfer Learning" @default.
- W4313503250 cites W117283996 @default.
- W4313503250 cites W2001378671 @default.
- W4313503250 cites W2015181167 @default.
- W4313503250 cites W2152950860 @default.
- W4313503250 cites W2581082771 @default.
- W4313503250 cites W2787987596 @default.
- W4313503250 cites W2884209928 @default.
- W4313503250 cites W2888424632 @default.
- W4313503250 cites W2889290824 @default.
- W4313503250 cites W2910232125 @default.
- W4313503250 cites W2921785317 @default.
- W4313503250 cites W2922703796 @default.
- W4313503250 cites W2946122943 @default.
- W4313503250 cites W2955843876 @default.
- W4313503250 cites W2980539731 @default.
- W4313503250 cites W2989813910 @default.
- W4313503250 cites W2992471672 @default.
- W4313503250 cites W2996490063 @default.
- W4313503250 cites W2998175747 @default.
- W4313503250 cites W3006895533 @default.
- W4313503250 cites W3010168554 @default.
- W4313503250 cites W3035333819 @default.
- W4313503250 cites W3036365526 @default.
- W4313503250 cites W3038540011 @default.
- W4313503250 cites W3048126454 @default.
- W4313503250 cites W3049254768 @default.
- W4313503250 cites W3049612666 @default.
- W4313503250 cites W3094961137 @default.
- W4313503250 cites W3097337942 @default.
- W4313503250 cites W3135012562 @default.
- W4313503250 cites W3136139906 @default.
- W4313503250 cites W3156313549 @default.
- W4313503250 cites W3157148855 @default.
- W4313503250 cites W3157536872 @default.
- W4313503250 cites W4200120391 @default.
- W4313503250 cites W4205895239 @default.
- W4313503250 cites W4210897777 @default.
- W4313503250 cites W4214775244 @default.
- W4313503250 cites W4285145056 @default.
- W4313503250 cites W4293526436 @default.
- W4313503250 cites W4293678623 @default.
- W4313503250 doi "https://doi.org/10.3390/cancers15010012" @default.
- W4313503250 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36612010" @default.
- W4313503250 hasPublicationYear "2022" @default.
- W4313503250 type Work @default.
- W4313503250 citedByCount "3" @default.
- W4313503250 countsByYear W43135032502023 @default.
- W4313503250 crossrefType "journal-article" @default.
- W4313503250 hasAuthorship W4313503250A5016293539 @default.
- W4313503250 hasAuthorship W4313503250A5027530257 @default.
- W4313503250 hasAuthorship W4313503250A5034891317 @default.
- W4313503250 hasAuthorship W4313503250A5040687550 @default.
- W4313503250 hasAuthorship W4313503250A5049915833 @default.
- W4313503250 hasAuthorship W4313503250A5076158780 @default.
- W4313503250 hasAuthorship W4313503250A5086912404 @default.
- W4313503250 hasBestOaLocation W43135032501 @default.
- W4313503250 hasConcept C108583219 @default.
- W4313503250 hasConcept C115961682 @default.
- W4313503250 hasConcept C119857082 @default.
- W4313503250 hasConcept C121608353 @default.
- W4313503250 hasConcept C126322002 @default.
- W4313503250 hasConcept C142724271 @default.
- W4313503250 hasConcept C149635348 @default.
- W4313503250 hasConcept C150899416 @default.
- W4313503250 hasConcept C153180895 @default.
- W4313503250 hasConcept C154945302 @default.
- W4313503250 hasConcept C2777789703 @default.
- W4313503250 hasConcept C2985745059 @default.
- W4313503250 hasConcept C34736171 @default.
- W4313503250 hasConcept C41008148 @default.
- W4313503250 hasConcept C50644808 @default.
- W4313503250 hasConcept C534262118 @default.
- W4313503250 hasConcept C71924100 @default.
- W4313503250 hasConcept C81860439 @default.
- W4313503250 hasConcept C99498987 @default.
- W4313503250 hasConceptScore W4313503250C108583219 @default.
- W4313503250 hasConceptScore W4313503250C115961682 @default.
- W4313503250 hasConceptScore W4313503250C119857082 @default.
- W4313503250 hasConceptScore W4313503250C121608353 @default.
- W4313503250 hasConceptScore W4313503250C126322002 @default.
- W4313503250 hasConceptScore W4313503250C142724271 @default.
- W4313503250 hasConceptScore W4313503250C149635348 @default.
- W4313503250 hasConceptScore W4313503250C150899416 @default.
- W4313503250 hasConceptScore W4313503250C153180895 @default.
- W4313503250 hasConceptScore W4313503250C154945302 @default.
- W4313503250 hasConceptScore W4313503250C2777789703 @default.