Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313503462> ?p ?o ?g. }
- W4313503462 abstract "Introduction Because of persistent airflow limitation in chronic obstructive pulmonary disease (COPD), patients with COPD often have complications of dyspnea. However, as a leading symptom of COPD, dyspnea in COPD deserves special consideration regarding treatment in this fragile population for pre-clinical health management in COPD. Methods: Based on the above, this paper proposes a multi-modal data combination strategy by combining the local and global features for dyspnea identification in COPD based on the multi-layer perceptron (MLP) classifier. Methods First, lung region images are automatically segmented from chest HRCT images for extracting the original 1,316 lung radiomics (OLR, 1,316) and 13,824 3D CNN features (O3C, 13,824). Second, the local features, including five selected pulmonary function test (PFT) parameters (SLF, 5), 28 selected lung radiomics (SLR, 28), and 22 selected 3D CNN features (S3C, 22), are respectively selected from the original 11 PFT parameters (OLF, 11), 1,316 OLR, and 13,824 O3C by the least absolute shrinkage and selection operator (Lasso) algorithm. Meantime, the global features, including two fused PFT parameters (FLF, 2), six fused lung radiomics (FLR, 6), and 34 fused 3D CNN features (F3C, 34), are respectively fused by 11 OLF, 1,316 OLR, and 13,824 O3C using the principal component analysis (PCA) algorithm. Finally, we combine all the local and global features (SLF + FLF + SLR + FLR + S3C + F3C, 5+ 2 + 28 + 6 + 22 + 34) for dyspnea identification in COPD based on the MLP classifier. Results Our proposed method comprehensively improves classification performance. The MLP classifier with all the local and global features achieves the best classification performance at 87.7% of accuracy, 87.7% of precision, 87.7% of recall, 87.7% of F1-scorel, and 89.3% of AUC, respectively. Discussion Compared with single-modal data, the proposed strategy effectively improves the classification performance for dyspnea identification in COPD, providing an objective and effective tool for COPD management." @default.
- W4313503462 created "2023-01-06" @default.
- W4313503462 creator A5000432967 @default.
- W4313503462 creator A5002286239 @default.
- W4313503462 creator A5008681364 @default.
- W4313503462 creator A5028647290 @default.
- W4313503462 creator A5029311630 @default.
- W4313503462 creator A5030169492 @default.
- W4313503462 creator A5033892670 @default.
- W4313503462 creator A5046929289 @default.
- W4313503462 creator A5066820530 @default.
- W4313503462 creator A5072085838 @default.
- W4313503462 creator A5072541304 @default.
- W4313503462 creator A5073425627 @default.
- W4313503462 date "2022-12-21" @default.
- W4313503462 modified "2023-09-26" @default.
- W4313503462 title "Multi-modal data combination strategy based on chest HRCT images and PFT parameters for intelligent dyspnea identification in COPD" @default.
- W4313503462 cites W1678356000 @default.
- W4313503462 cites W2005302880 @default.
- W4313503462 cites W2006967044 @default.
- W4313503462 cites W2043525715 @default.
- W4313503462 cites W2049087424 @default.
- W4313503462 cites W2051400033 @default.
- W4313503462 cites W2075817276 @default.
- W4313503462 cites W2091662955 @default.
- W4313503462 cites W2114494355 @default.
- W4313503462 cites W2122573318 @default.
- W4313503462 cites W2123272986 @default.
- W4313503462 cites W2125283600 @default.
- W4313503462 cites W2128739912 @default.
- W4313503462 cites W2135046866 @default.
- W4313503462 cites W2137186811 @default.
- W4313503462 cites W2210367345 @default.
- W4313503462 cites W2319224774 @default.
- W4313503462 cites W2460043942 @default.
- W4313503462 cites W2763148304 @default.
- W4313503462 cites W2767128594 @default.
- W4313503462 cites W2808253820 @default.
- W4313503462 cites W2836766577 @default.
- W4313503462 cites W2911964244 @default.
- W4313503462 cites W2920797638 @default.
- W4313503462 cites W2959361652 @default.
- W4313503462 cites W2985702256 @default.
- W4313503462 cites W3003963926 @default.
- W4313503462 cites W3016185152 @default.
- W4313503462 cites W3040312160 @default.
- W4313503462 cites W3054666633 @default.
- W4313503462 cites W3095179158 @default.
- W4313503462 cites W3096844595 @default.
- W4313503462 cites W3106717751 @default.
- W4313503462 cites W3123893801 @default.
- W4313503462 cites W3135517338 @default.
- W4313503462 cites W3163598607 @default.
- W4313503462 cites W3167507905 @default.
- W4313503462 cites W3173250112 @default.
- W4313503462 cites W3178509271 @default.
- W4313503462 cites W3186462935 @default.
- W4313503462 cites W3196236169 @default.
- W4313503462 cites W3207625206 @default.
- W4313503462 cites W3215060105 @default.
- W4313503462 cites W3217612255 @default.
- W4313503462 cites W4210654174 @default.
- W4313503462 cites W4212792796 @default.
- W4313503462 cites W4213237113 @default.
- W4313503462 cites W4220861480 @default.
- W4313503462 cites W4224231953 @default.
- W4313503462 cites W4225747000 @default.
- W4313503462 cites W4240573104 @default.
- W4313503462 cites W4256049924 @default.
- W4313503462 cites W4283703008 @default.
- W4313503462 cites W4284972501 @default.
- W4313503462 cites W4296467400 @default.
- W4313503462 doi "https://doi.org/10.3389/fmed.2022.980950" @default.
- W4313503462 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36619622" @default.
- W4313503462 hasPublicationYear "2022" @default.
- W4313503462 type Work @default.
- W4313503462 citedByCount "0" @default.
- W4313503462 crossrefType "journal-article" @default.
- W4313503462 hasAuthorship W4313503462A5000432967 @default.
- W4313503462 hasAuthorship W4313503462A5002286239 @default.
- W4313503462 hasAuthorship W4313503462A5008681364 @default.
- W4313503462 hasAuthorship W4313503462A5028647290 @default.
- W4313503462 hasAuthorship W4313503462A5029311630 @default.
- W4313503462 hasAuthorship W4313503462A5030169492 @default.
- W4313503462 hasAuthorship W4313503462A5033892670 @default.
- W4313503462 hasAuthorship W4313503462A5046929289 @default.
- W4313503462 hasAuthorship W4313503462A5066820530 @default.
- W4313503462 hasAuthorship W4313503462A5072085838 @default.
- W4313503462 hasAuthorship W4313503462A5072541304 @default.
- W4313503462 hasAuthorship W4313503462A5073425627 @default.
- W4313503462 hasBestOaLocation W43135034621 @default.
- W4313503462 hasConcept C126322002 @default.
- W4313503462 hasConcept C148483581 @default.
- W4313503462 hasConcept C153180895 @default.
- W4313503462 hasConcept C154945302 @default.
- W4313503462 hasConcept C2776780178 @default.
- W4313503462 hasConcept C41008148 @default.
- W4313503462 hasConcept C71924100 @default.
- W4313503462 hasConceptScore W4313503462C126322002 @default.
- W4313503462 hasConceptScore W4313503462C148483581 @default.