Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313503657> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W4313503657 endingPage "111" @default.
- W4313503657 startingPage "111" @default.
- W4313503657 abstract "The two-parameter gamma distribution is one of the most commonly used distributions in analyzing environmental, meteorological, medical, and survival data. It has a two-dimensional minimal sufficient statistic, and the two parameters can be taken to be the mean and shape parameters. This makes it closely comparable to the normal model, but it differs substantially in that the exact distribution for the minimal sufficient statistic is not available. A Bartlett-type correction of the log-likelihood ratio statistic is proposed for the one-sample gamma mean problem and extended to testing for homogeneity of k≥2 independent gamma means. The exact correction factor, in general, does not exist in closed form. In this paper, a simulation algorithm is proposed to obtain the correction factor numerically. Real-life examples and simulation studies are used to illustrate the application and the accuracy of the proposed method." @default.
- W4313503657 created "2023-01-06" @default.
- W4313503657 creator A5063558415 @default.
- W4313503657 date "2023-01-05" @default.
- W4313503657 modified "2023-09-25" @default.
- W4313503657 title "Comparing Several Gamma Means: An Improved Log-Likelihood Ratio Test" @default.
- W4313503657 cites W1968168084 @default.
- W4313503657 cites W2111478657 @default.
- W4313503657 cites W4210300788 @default.
- W4313503657 cites W4235092540 @default.
- W4313503657 cites W4253897692 @default.
- W4313503657 cites W4255655703 @default.
- W4313503657 doi "https://doi.org/10.3390/e25010111" @default.
- W4313503657 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36673252" @default.
- W4313503657 hasPublicationYear "2023" @default.
- W4313503657 type Work @default.
- W4313503657 citedByCount "0" @default.
- W4313503657 crossrefType "journal-article" @default.
- W4313503657 hasAuthorship W4313503657A5063558415 @default.
- W4313503657 hasBestOaLocation W43135036571 @default.
- W4313503657 hasConcept C105795698 @default.
- W4313503657 hasConcept C142259097 @default.
- W4313503657 hasConcept C149717495 @default.
- W4313503657 hasConcept C169857963 @default.
- W4313503657 hasConcept C28826006 @default.
- W4313503657 hasConcept C33923547 @default.
- W4313503657 hasConcept C87007009 @default.
- W4313503657 hasConcept C89128539 @default.
- W4313503657 hasConcept C9483764 @default.
- W4313503657 hasConceptScore W4313503657C105795698 @default.
- W4313503657 hasConceptScore W4313503657C142259097 @default.
- W4313503657 hasConceptScore W4313503657C149717495 @default.
- W4313503657 hasConceptScore W4313503657C169857963 @default.
- W4313503657 hasConceptScore W4313503657C28826006 @default.
- W4313503657 hasConceptScore W4313503657C33923547 @default.
- W4313503657 hasConceptScore W4313503657C87007009 @default.
- W4313503657 hasConceptScore W4313503657C89128539 @default.
- W4313503657 hasConceptScore W4313503657C9483764 @default.
- W4313503657 hasIssue "1" @default.
- W4313503657 hasLocation W43135036571 @default.
- W4313503657 hasLocation W43135036572 @default.
- W4313503657 hasLocation W43135036573 @default.
- W4313503657 hasOpenAccess W4313503657 @default.
- W4313503657 hasPrimaryLocation W43135036571 @default.
- W4313503657 hasRelatedWork W1974030868 @default.
- W4313503657 hasRelatedWork W2026162852 @default.
- W4313503657 hasRelatedWork W2027155459 @default.
- W4313503657 hasRelatedWork W2034287488 @default.
- W4313503657 hasRelatedWork W2042536588 @default.
- W4313503657 hasRelatedWork W2343515379 @default.
- W4313503657 hasRelatedWork W2357704222 @default.
- W4313503657 hasRelatedWork W4283818224 @default.
- W4313503657 hasRelatedWork W4313503657 @default.
- W4313503657 hasRelatedWork W780220278 @default.
- W4313503657 hasVolume "25" @default.
- W4313503657 isParatext "false" @default.
- W4313503657 isRetracted "false" @default.
- W4313503657 workType "article" @default.