Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313503766> ?p ?o ?g. }
- W4313503766 endingPage "161421" @default.
- W4313503766 startingPage "161421" @default.
- W4313503766 abstract "Understanding the spatial variability of soil organic matter (SOM), soil total nitrogen (STN), soil total phosphorus (STP), and soil total potassium (STK) is important to support site-specific agronomic management, food production, and climate change adaptation. High-resolution remote sensing imageries have emerged as an innovative solution to investigate the spatial variation in agricultural soils with machine learning (ML) algorithms. However, the predictive power of the individual and combined effects of Sentinel-1 (S1) synthetic aperture radar (SAR) and Sentinel-2 (S2) multispectral images for mapping soil properties, especially STN, STP, and STK, have rarely been investigated. Moreover, single ML model may achieve unstable performance for predicting multiple soil properties due to strong spatial heterogeneity. This study explored the combine use of S1, S2, and DEM derivatives to map SOM, STN, STP, and STK content of a sloped cropland of northeastern China. A two-step method with a weighted sum of four ML models was proposed to improve the accuracy and robustness in predicting multiple soil properties. Our results showed that single ML model has various performance in predicting the four soil properties. The optimal ML models could explain approximately 56 %, 53 %, 56 % and 37 % of the variability of SOM, STN, STP, and STK, respectively. Using the weights estimated through a 10-fold cross-validation procedure, the two-step ensemble learning model was retrained and showed more robust performance than the four ML models, in which the prediction accuracy was improved by 2.38 %, 1.40 %, 3.52 %, and 3.29 % for SOM, STN, STP, and STK, respectively. Our results also showed that the optical S2 derived features, especially the two S2 short-wave infrared bands, enhanced vegetation index, and soil adjusted vegetation index, were more important for soil property prediction than S1 data and DEM derivatives. Compared with individual sensor, a combination of S1 and S2 data yielded more accurate predictions of STN and STP but not for SOM and STK. The results of this study highlight the potential of high-resolution S1 and S2 data and the two-step method for soil property prediction at farmland scale." @default.
- W4313503766 created "2023-01-06" @default.
- W4313503766 creator A5035655990 @default.
- W4313503766 creator A5036424895 @default.
- W4313503766 creator A5044764120 @default.
- W4313503766 creator A5060470951 @default.
- W4313503766 creator A5083777993 @default.
- W4313503766 date "2023-03-01" @default.
- W4313503766 modified "2023-09-28" @default.
- W4313503766 title "Synergetic use of DEM derivatives, Sentinel-1 and Sentinel-2 data for mapping soil properties of a sloped cropland based on a two-step ensemble learning method" @default.
- W4313503766 cites W1058055990 @default.
- W4313503766 cites W1592341820 @default.
- W4313503766 cites W1747046542 @default.
- W4313503766 cites W1837874438 @default.
- W4313503766 cites W1964217023 @default.
- W4313503766 cites W1965269354 @default.
- W4313503766 cites W1971824428 @default.
- W4313503766 cites W1993232367 @default.
- W4313503766 cites W1993355562 @default.
- W4313503766 cites W2007370078 @default.
- W4313503766 cites W2011010318 @default.
- W4313503766 cites W2013665199 @default.
- W4313503766 cites W2054325787 @default.
- W4313503766 cites W2070286911 @default.
- W4313503766 cites W2071501094 @default.
- W4313503766 cites W2075505566 @default.
- W4313503766 cites W2077367380 @default.
- W4313503766 cites W2081340599 @default.
- W4313503766 cites W2116395914 @default.
- W4313503766 cites W2125382680 @default.
- W4313503766 cites W2125779452 @default.
- W4313503766 cites W2126699720 @default.
- W4313503766 cites W2144898279 @default.
- W4313503766 cites W2156665896 @default.
- W4313503766 cites W2186294614 @default.
- W4313503766 cites W2310114729 @default.
- W4313503766 cites W2322799392 @default.
- W4313503766 cites W2345726069 @default.
- W4313503766 cites W2397795916 @default.
- W4313503766 cites W2560136348 @default.
- W4313503766 cites W2585334141 @default.
- W4313503766 cites W2607306668 @default.
- W4313503766 cites W2653815135 @default.
- W4313503766 cites W2739825222 @default.
- W4313503766 cites W2756443134 @default.
- W4313503766 cites W2798064106 @default.
- W4313503766 cites W2900600890 @default.
- W4313503766 cites W2905192710 @default.
- W4313503766 cites W2908031888 @default.
- W4313503766 cites W2911964244 @default.
- W4313503766 cites W2914236881 @default.
- W4313503766 cites W2947411206 @default.
- W4313503766 cites W2953707985 @default.
- W4313503766 cites W2963253923 @default.
- W4313503766 cites W2971642618 @default.
- W4313503766 cites W2980044769 @default.
- W4313503766 cites W2984531413 @default.
- W4313503766 cites W2995545753 @default.
- W4313503766 cites W3010020030 @default.
- W4313503766 cites W3012444880 @default.
- W4313503766 cites W3017261357 @default.
- W4313503766 cites W3039898056 @default.
- W4313503766 cites W3064185571 @default.
- W4313503766 cites W3086056576 @default.
- W4313503766 cites W3105014320 @default.
- W4313503766 cites W3107505838 @default.
- W4313503766 cites W3111257695 @default.
- W4313503766 cites W3124243713 @default.
- W4313503766 cites W3131432002 @default.
- W4313503766 cites W3149839747 @default.
- W4313503766 cites W3153503777 @default.
- W4313503766 cites W3170332267 @default.
- W4313503766 cites W3196876317 @default.
- W4313503766 cites W3215367274 @default.
- W4313503766 cites W4205277234 @default.
- W4313503766 cites W4211012058 @default.
- W4313503766 cites W4220783741 @default.
- W4313503766 cites W4228998753 @default.
- W4313503766 cites W4283161825 @default.
- W4313503766 cites W4283272946 @default.
- W4313503766 cites W4290790450 @default.
- W4313503766 cites W4306770087 @default.
- W4313503766 doi "https://doi.org/10.1016/j.scitotenv.2023.161421" @default.
- W4313503766 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36621491" @default.
- W4313503766 hasPublicationYear "2023" @default.
- W4313503766 type Work @default.
- W4313503766 citedByCount "2" @default.
- W4313503766 countsByYear W43135037662023 @default.
- W4313503766 crossrefType "journal-article" @default.
- W4313503766 hasAuthorship W4313503766A5035655990 @default.
- W4313503766 hasAuthorship W4313503766A5036424895 @default.
- W4313503766 hasAuthorship W4313503766A5044764120 @default.
- W4313503766 hasAuthorship W4313503766A5060470951 @default.
- W4313503766 hasAuthorship W4313503766A5083777993 @default.
- W4313503766 hasConcept C104471815 @default.
- W4313503766 hasConcept C105795698 @default.
- W4313503766 hasConcept C118518473 @default.
- W4313503766 hasConcept C120217122 @default.