Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313503769> ?p ?o ?g. }
- W4313503769 endingPage "112411" @default.
- W4313503769 startingPage "112411" @default.
- W4313503769 abstract "Mapping the surroundings is a challenging task required for mobile robot. Fusion of heterogeneous sensors measurement has gradually been the main focus of robot perception. In this work, the Lidar and camera measurement is fused to obtain robust motion estimation and construct hybrid metric-feature map. By coupling visual information, the powerful tracking ability of visual features is heuristically applied to support the scan matching. With the estimation of Lidar odometry, the camera motion in complicated scene can be guaranteed. Meanwhile, the hybrid map is divided into submaps to improve the mapping efficiency, and each submap is composed of a grid-based metric submap and a group of visual features. Then a multi-stage loop closure strategy is applied to determine the loop candidate. Besides, multi-layer optimization including local bundle adjustment and pose graph optimization is performed to obtain global consistent map. The effectiveness of the proposed method is verified in different scenarios." @default.
- W4313503769 created "2023-01-06" @default.
- W4313503769 creator A5017066209 @default.
- W4313503769 creator A5024124240 @default.
- W4313503769 creator A5028296024 @default.
- W4313503769 creator A5034942869 @default.
- W4313503769 creator A5046849377 @default.
- W4313503769 creator A5058958587 @default.
- W4313503769 creator A5065473539 @default.
- W4313503769 date "2023-02-01" @default.
- W4313503769 modified "2023-10-01" @default.
- W4313503769 title "Hybrid metric-feature mapping based on camera and Lidar sensor fusion" @default.
- W4313503769 cites W1512698229 @default.
- W4313503769 cites W1588996594 @default.
- W4313503769 cites W1971843595 @default.
- W4313503769 cites W1972671602 @default.
- W4313503769 cites W1989484209 @default.
- W4313503769 cites W2008557445 @default.
- W4313503769 cites W2020890121 @default.
- W4313503769 cites W2032042491 @default.
- W4313503769 cites W2042350528 @default.
- W4313503769 cites W2081856039 @default.
- W4313503769 cites W2097771816 @default.
- W4313503769 cites W2099177570 @default.
- W4313503769 cites W2109635530 @default.
- W4313503769 cites W2109731149 @default.
- W4313503769 cites W2160072137 @default.
- W4313503769 cites W2194739730 @default.
- W4313503769 cites W2247712632 @default.
- W4313503769 cites W2296228853 @default.
- W4313503769 cites W2316447390 @default.
- W4313503769 cites W2411093439 @default.
- W4313503769 cites W2515381329 @default.
- W4313503769 cites W2580440899 @default.
- W4313503769 cites W2737196286 @default.
- W4313503769 cites W2738816079 @default.
- W4313503769 cites W2745859992 @default.
- W4313503769 cites W2750632489 @default.
- W4313503769 cites W2886968365 @default.
- W4313503769 cites W2909908358 @default.
- W4313503769 cites W2915903202 @default.
- W4313503769 cites W2963200201 @default.
- W4313503769 cites W3000065826 @default.
- W4313503769 cites W3003175783 @default.
- W4313503769 cites W3015235064 @default.
- W4313503769 cites W3047375952 @default.
- W4313503769 cites W3092218351 @default.
- W4313503769 cites W3098410961 @default.
- W4313503769 cites W3100207723 @default.
- W4313503769 cites W3102327032 @default.
- W4313503769 cites W3103648783 @default.
- W4313503769 cites W3107577571 @default.
- W4313503769 cites W3124420883 @default.
- W4313503769 cites W3128397524 @default.
- W4313503769 cites W3132323429 @default.
- W4313503769 cites W3150297828 @default.
- W4313503769 cites W3205572674 @default.
- W4313503769 cites W339197716 @default.
- W4313503769 cites W376214145 @default.
- W4313503769 doi "https://doi.org/10.1016/j.measurement.2022.112411" @default.
- W4313503769 hasPublicationYear "2023" @default.
- W4313503769 type Work @default.
- W4313503769 citedByCount "2" @default.
- W4313503769 countsByYear W43135037692023 @default.
- W4313503769 crossrefType "journal-article" @default.
- W4313503769 hasAuthorship W4313503769A5017066209 @default.
- W4313503769 hasAuthorship W4313503769A5024124240 @default.
- W4313503769 hasAuthorship W4313503769A5028296024 @default.
- W4313503769 hasAuthorship W4313503769A5034942869 @default.
- W4313503769 hasAuthorship W4313503769A5046849377 @default.
- W4313503769 hasAuthorship W4313503769A5058958587 @default.
- W4313503769 hasAuthorship W4313503769A5065473539 @default.
- W4313503769 hasConcept C117455697 @default.
- W4313503769 hasConcept C127413603 @default.
- W4313503769 hasConcept C138885662 @default.
- W4313503769 hasConcept C154945302 @default.
- W4313503769 hasConcept C176217482 @default.
- W4313503769 hasConcept C179458375 @default.
- W4313503769 hasConcept C19966478 @default.
- W4313503769 hasConcept C205649164 @default.
- W4313503769 hasConcept C21547014 @default.
- W4313503769 hasConcept C2776401178 @default.
- W4313503769 hasConcept C31972630 @default.
- W4313503769 hasConcept C33954974 @default.
- W4313503769 hasConcept C41008148 @default.
- W4313503769 hasConcept C41895202 @default.
- W4313503769 hasConcept C49441653 @default.
- W4313503769 hasConcept C51399673 @default.
- W4313503769 hasConcept C52622490 @default.
- W4313503769 hasConcept C62649853 @default.
- W4313503769 hasConcept C86369673 @default.
- W4313503769 hasConcept C90509273 @default.
- W4313503769 hasConceptScore W4313503769C117455697 @default.
- W4313503769 hasConceptScore W4313503769C127413603 @default.
- W4313503769 hasConceptScore W4313503769C138885662 @default.
- W4313503769 hasConceptScore W4313503769C154945302 @default.
- W4313503769 hasConceptScore W4313503769C176217482 @default.
- W4313503769 hasConceptScore W4313503769C179458375 @default.