Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313503786> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4313503786 abstract "Federated learning techniques aim to train and build machine learning models based on distributed datasets across multiple devices, avoiding data leakage. The main idea is to perform training on remote devices or isolated data centers without transferring data to centralized repositories, thus mitigating privacy risks. Data analytics in education, in particular learning analytics, is a promising scenario to apply this approach to address the legal and ethical issues related to processing sensitive data. Indeed, given the nature of the data to be studied (personal data, educational outcomes, data concerning minors), it is essential to ensure that the conduct of these studies and the publication of the results provide the necessary guarantees to protect the privacy of the individuals involved and the protection of their data. In addition, the application of quantitative techniques based on the exploitation of data on the use of educational platforms, student performance, use of devices, etc., can account for educational problems such as the determination of user profiles, personalized learning trajectories, or early dropout indicators and alerts, among others. This paper presents the application of federated learning techniques to two learning analytics problems: dropout prediction and unsupervised student classification. The experiments allow us to conclude that the proposed solutions achieve comparable results from the performance point of view with the centralized versions, avoiding centralizing the data for training the models." @default.
- W4313503786 created "2023-01-06" @default.
- W4313503786 creator A5041847349 @default.
- W4313503786 creator A5044048297 @default.
- W4313503786 creator A5061046385 @default.
- W4313503786 creator A5061372213 @default.
- W4313503786 creator A5085287240 @default.
- W4313503786 creator A5085558970 @default.
- W4313503786 date "2023-01-05" @default.
- W4313503786 modified "2023-09-29" @default.
- W4313503786 title "Federated Learning for Education Data Analytics" @default.
- W4313503786 doi "https://doi.org/10.20944/preprints202301.0092.v1" @default.
- W4313503786 hasPublicationYear "2023" @default.
- W4313503786 type Work @default.
- W4313503786 citedByCount "0" @default.
- W4313503786 crossrefType "posted-content" @default.
- W4313503786 hasAuthorship W4313503786A5041847349 @default.
- W4313503786 hasAuthorship W4313503786A5044048297 @default.
- W4313503786 hasAuthorship W4313503786A5061046385 @default.
- W4313503786 hasAuthorship W4313503786A5061372213 @default.
- W4313503786 hasAuthorship W4313503786A5085287240 @default.
- W4313503786 hasAuthorship W4313503786A5085558970 @default.
- W4313503786 hasBestOaLocation W43135037861 @default.
- W4313503786 hasConcept C119857082 @default.
- W4313503786 hasConcept C123201435 @default.
- W4313503786 hasConcept C124101348 @default.
- W4313503786 hasConcept C154945302 @default.
- W4313503786 hasConcept C175801342 @default.
- W4313503786 hasConcept C2522767166 @default.
- W4313503786 hasConcept C2524010 @default.
- W4313503786 hasConcept C2776145597 @default.
- W4313503786 hasConcept C2777598771 @default.
- W4313503786 hasConcept C2777648619 @default.
- W4313503786 hasConcept C28719098 @default.
- W4313503786 hasConcept C33923547 @default.
- W4313503786 hasConcept C38652104 @default.
- W4313503786 hasConcept C41008148 @default.
- W4313503786 hasConcept C79158427 @default.
- W4313503786 hasConceptScore W4313503786C119857082 @default.
- W4313503786 hasConceptScore W4313503786C123201435 @default.
- W4313503786 hasConceptScore W4313503786C124101348 @default.
- W4313503786 hasConceptScore W4313503786C154945302 @default.
- W4313503786 hasConceptScore W4313503786C175801342 @default.
- W4313503786 hasConceptScore W4313503786C2522767166 @default.
- W4313503786 hasConceptScore W4313503786C2524010 @default.
- W4313503786 hasConceptScore W4313503786C2776145597 @default.
- W4313503786 hasConceptScore W4313503786C2777598771 @default.
- W4313503786 hasConceptScore W4313503786C2777648619 @default.
- W4313503786 hasConceptScore W4313503786C28719098 @default.
- W4313503786 hasConceptScore W4313503786C33923547 @default.
- W4313503786 hasConceptScore W4313503786C38652104 @default.
- W4313503786 hasConceptScore W4313503786C41008148 @default.
- W4313503786 hasConceptScore W4313503786C79158427 @default.
- W4313503786 hasLocation W43135037861 @default.
- W4313503786 hasLocation W43135037862 @default.
- W4313503786 hasOpenAccess W4313503786 @default.
- W4313503786 hasPrimaryLocation W43135037861 @default.
- W4313503786 hasRelatedWork W123076107 @default.
- W4313503786 hasRelatedWork W2078482049 @default.
- W4313503786 hasRelatedWork W2906062308 @default.
- W4313503786 hasRelatedWork W2955609745 @default.
- W4313503786 hasRelatedWork W3000065748 @default.
- W4313503786 hasRelatedWork W3021163624 @default.
- W4313503786 hasRelatedWork W3126338254 @default.
- W4313503786 hasRelatedWork W3154404963 @default.
- W4313503786 hasRelatedWork W3157139468 @default.
- W4313503786 hasRelatedWork W4244082941 @default.
- W4313503786 isParatext "false" @default.
- W4313503786 isRetracted "false" @default.
- W4313503786 workType "article" @default.