Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313506227> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4313506227 endingPage "109913" @default.
- W4313506227 startingPage "109913" @default.
- W4313506227 abstract "Taxonomy plays a vital role in identifying different mosquito species. Studies show that though not all mosquitoes threaten humanity, specific species exist in less fortunate areas that immensely disrupt people’s lives. As identified, researchers discovered that deficiency in identifying between a vector mosquito that carries a lethal disease apart from non-vectors led to people becoming susceptible. Recently, studies proposed automating these mosquitoes’ classification so that people who lack awareness can soon obtain assistance from an intelligent system. However, most solutions still require expensive computations and specialized resources to operate and even reproduce, making the most vulnerable areas or groups of people unable to benefit from them. Therefore, this work solves this problem with a lightweight model built by compressing, duplicating, and fusing a Deep Convolutional Neural Network model (DCNN), adding a modified residual block, and training it through Knowledge Distillation (KD). Upon assessment, results yielded significant performance improvements, as the proposed model reached 99.22% overall accuracy that only requires 0.33 GFLOPs to operate and consumes only 437 KB of disk space. In addition, results also showed the benefits of KD in saliency. Compared to most studies, previous and current state-of-the-art DCNNs, this work shows promising viability to solve the problem pragmatically." @default.
- W4313506227 created "2023-01-06" @default.
- W4313506227 creator A5037954007 @default.
- W4313506227 date "2023-01-01" @default.
- W4313506227 modified "2023-09-27" @default.
- W4313506227 title "Machine-based mosquito taxonomy with a lightweight network-fused efficient dual ConvNet with residual learning and Knowledge Distillation" @default.
- W4313506227 cites W1990847378 @default.
- W4313506227 cites W2132316389 @default.
- W4313506227 cites W2330219538 @default.
- W4313506227 cites W2419354049 @default.
- W4313506227 cites W2564288310 @default.
- W4313506227 cites W2569177493 @default.
- W4313506227 cites W2621367454 @default.
- W4313506227 cites W2745895088 @default.
- W4313506227 cites W2787884921 @default.
- W4313506227 cites W2799666243 @default.
- W4313506227 cites W2807567209 @default.
- W4313506227 cites W2902114955 @default.
- W4313506227 cites W2910634864 @default.
- W4313506227 cites W2919681993 @default.
- W4313506227 cites W2934946272 @default.
- W4313506227 cites W2972309292 @default.
- W4313506227 cites W2973514825 @default.
- W4313506227 cites W2997849610 @default.
- W4313506227 cites W3017875707 @default.
- W4313506227 cites W3037662149 @default.
- W4313506227 cites W3100321043 @default.
- W4313506227 cites W3102707396 @default.
- W4313506227 cites W3129306967 @default.
- W4313506227 cites W3138102940 @default.
- W4313506227 cites W3162226787 @default.
- W4313506227 cites W3169822846 @default.
- W4313506227 cites W3175995352 @default.
- W4313506227 cites W3180481887 @default.
- W4313506227 cites W3202341739 @default.
- W4313506227 cites W3211095418 @default.
- W4313506227 cites W4214952042 @default.
- W4313506227 cites W4240905451 @default.
- W4313506227 cites W4282921293 @default.
- W4313506227 doi "https://doi.org/10.1016/j.asoc.2022.109913" @default.
- W4313506227 hasPublicationYear "2023" @default.
- W4313506227 type Work @default.
- W4313506227 citedByCount "1" @default.
- W4313506227 countsByYear W43135062272023 @default.
- W4313506227 crossrefType "journal-article" @default.
- W4313506227 hasAuthorship W4313506227A5037954007 @default.
- W4313506227 hasConcept C11413529 @default.
- W4313506227 hasConcept C119857082 @default.
- W4313506227 hasConcept C124952713 @default.
- W4313506227 hasConcept C142362112 @default.
- W4313506227 hasConcept C154945302 @default.
- W4313506227 hasConcept C155512373 @default.
- W4313506227 hasConcept C173608175 @default.
- W4313506227 hasConcept C18903297 @default.
- W4313506227 hasConcept C2780980858 @default.
- W4313506227 hasConcept C3826847 @default.
- W4313506227 hasConcept C41008148 @default.
- W4313506227 hasConcept C58642233 @default.
- W4313506227 hasConcept C81363708 @default.
- W4313506227 hasConcept C86803240 @default.
- W4313506227 hasConceptScore W4313506227C11413529 @default.
- W4313506227 hasConceptScore W4313506227C119857082 @default.
- W4313506227 hasConceptScore W4313506227C124952713 @default.
- W4313506227 hasConceptScore W4313506227C142362112 @default.
- W4313506227 hasConceptScore W4313506227C154945302 @default.
- W4313506227 hasConceptScore W4313506227C155512373 @default.
- W4313506227 hasConceptScore W4313506227C173608175 @default.
- W4313506227 hasConceptScore W4313506227C18903297 @default.
- W4313506227 hasConceptScore W4313506227C2780980858 @default.
- W4313506227 hasConceptScore W4313506227C3826847 @default.
- W4313506227 hasConceptScore W4313506227C41008148 @default.
- W4313506227 hasConceptScore W4313506227C58642233 @default.
- W4313506227 hasConceptScore W4313506227C81363708 @default.
- W4313506227 hasConceptScore W4313506227C86803240 @default.
- W4313506227 hasLocation W43135062271 @default.
- W4313506227 hasOpenAccess W4313506227 @default.
- W4313506227 hasPrimaryLocation W43135062271 @default.
- W4313506227 hasRelatedWork W2748454020 @default.
- W4313506227 hasRelatedWork W2898360562 @default.
- W4313506227 hasRelatedWork W2961085424 @default.
- W4313506227 hasRelatedWork W3005814217 @default.
- W4313506227 hasRelatedWork W3021430260 @default.
- W4313506227 hasRelatedWork W3027997911 @default.
- W4313506227 hasRelatedWork W3095334494 @default.
- W4313506227 hasRelatedWork W3181746755 @default.
- W4313506227 hasRelatedWork W4287776258 @default.
- W4313506227 hasRelatedWork W4306674287 @default.
- W4313506227 hasVolume "133" @default.
- W4313506227 isParatext "false" @default.
- W4313506227 isRetracted "false" @default.
- W4313506227 workType "article" @default.