Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313506677> ?p ?o ?g. }
- W4313506677 endingPage "319" @default.
- W4313506677 startingPage "319" @default.
- W4313506677 abstract "In the last few years, there has been a renewed interest in data fusion techniques, and, in particular, in pansharpening due to a paradigm shift from model-based to data-driven approaches, supported by the recent advances in deep learning. Although a plethora of convolutional neural networks (CNN) for pansharpening have been devised, some fundamental issues still wait for answers. Among these, cross-scale and cross-datasets generalization capabilities are probably the most urgent ones since most of the current networks are trained at a different scale (reduced-resolution), and, in general, they are well-fitted on some datasets but fail on others. A recent attempt to address both these issues leverages on a target-adaptive inference scheme operating with a suitable full-resolution loss. On the downside, such an approach pays an additional computational overhead due to the adaptation phase. In this work, we propose a variant of this method with an effective target-adaptation scheme that allows for the reduction in inference time by a factor of ten, on average, without accuracy loss. A wide set of experiments carried out on three different datasets, GeoEye-1, WorldView-2 and WorldView-3, prove the computational gain obtained while keeping top accuracy scores compared to state-of-the-art methods, both model-based and deep-learning ones. The generality of the proposed solution has also been validated, applying the new adaptation framework to different CNN models." @default.
- W4313506677 created "2023-01-06" @default.
- W4313506677 creator A5034757970 @default.
- W4313506677 creator A5091309552 @default.
- W4313506677 date "2023-01-05" @default.
- W4313506677 modified "2023-09-27" @default.
- W4313506677 title "Fast Full-Resolution Target-Adaptive CNN-Based Pansharpening Framework" @default.
- W4313506677 cites W2000323021 @default.
- W4313506677 cites W2010515061 @default.
- W4313506677 cites W2022075948 @default.
- W4313506677 cites W2034073840 @default.
- W4313506677 cites W2054440797 @default.
- W4313506677 cites W2056410627 @default.
- W4313506677 cites W2058449382 @default.
- W4313506677 cites W2064366277 @default.
- W4313506677 cites W2100329651 @default.
- W4313506677 cites W2106891293 @default.
- W4313506677 cites W2113338111 @default.
- W4313506677 cites W2120053475 @default.
- W4313506677 cites W2123046940 @default.
- W4313506677 cites W2150630348 @default.
- W4313506677 cites W2163677711 @default.
- W4313506677 cites W2171108951 @default.
- W4313506677 cites W2171211028 @default.
- W4313506677 cites W2172185514 @default.
- W4313506677 cites W2339428543 @default.
- W4313506677 cites W2462592242 @default.
- W4313506677 cites W2560449954 @default.
- W4313506677 cites W2612425037 @default.
- W4313506677 cites W2616590213 @default.
- W4313506677 cites W2619662254 @default.
- W4313506677 cites W2765749804 @default.
- W4313506677 cites W2766278341 @default.
- W4313506677 cites W2777033955 @default.
- W4313506677 cites W2778936354 @default.
- W4313506677 cites W2792142731 @default.
- W4313506677 cites W2792365373 @default.
- W4313506677 cites W2901160789 @default.
- W4313506677 cites W2921660688 @default.
- W4313506677 cites W2935896423 @default.
- W4313506677 cites W2963007295 @default.
- W4313506677 cites W2963183385 @default.
- W4313506677 cites W2965814782 @default.
- W4313506677 cites W3001742927 @default.
- W4313506677 cites W3041178351 @default.
- W4313506677 cites W3048064159 @default.
- W4313506677 cites W3096480538 @default.
- W4313506677 cites W3096904276 @default.
- W4313506677 cites W3097824737 @default.
- W4313506677 cites W3098542449 @default.
- W4313506677 cites W3172472472 @default.
- W4313506677 cites W3194146876 @default.
- W4313506677 cites W3207911243 @default.
- W4313506677 cites W4226507018 @default.
- W4313506677 cites W4288391574 @default.
- W4313506677 cites W4312447544 @default.
- W4313506677 doi "https://doi.org/10.3390/rs15020319" @default.
- W4313506677 hasPublicationYear "2023" @default.
- W4313506677 type Work @default.
- W4313506677 citedByCount "2" @default.
- W4313506677 countsByYear W43135066772023 @default.
- W4313506677 crossrefType "journal-article" @default.
- W4313506677 hasAuthorship W4313506677A5034757970 @default.
- W4313506677 hasAuthorship W4313506677A5091309552 @default.
- W4313506677 hasBestOaLocation W43135066771 @default.
- W4313506677 hasConcept C108583219 @default.
- W4313506677 hasConcept C119857082 @default.
- W4313506677 hasConcept C120665830 @default.
- W4313506677 hasConcept C121332964 @default.
- W4313506677 hasConcept C124101348 @default.
- W4313506677 hasConcept C134306372 @default.
- W4313506677 hasConcept C139807058 @default.
- W4313506677 hasConcept C154945302 @default.
- W4313506677 hasConcept C15744967 @default.
- W4313506677 hasConcept C177148314 @default.
- W4313506677 hasConcept C177264268 @default.
- W4313506677 hasConcept C199360897 @default.
- W4313506677 hasConcept C2776214188 @default.
- W4313506677 hasConcept C2780767217 @default.
- W4313506677 hasConcept C33923547 @default.
- W4313506677 hasConcept C41008148 @default.
- W4313506677 hasConcept C542102704 @default.
- W4313506677 hasConcept C81363708 @default.
- W4313506677 hasConceptScore W4313506677C108583219 @default.
- W4313506677 hasConceptScore W4313506677C119857082 @default.
- W4313506677 hasConceptScore W4313506677C120665830 @default.
- W4313506677 hasConceptScore W4313506677C121332964 @default.
- W4313506677 hasConceptScore W4313506677C124101348 @default.
- W4313506677 hasConceptScore W4313506677C134306372 @default.
- W4313506677 hasConceptScore W4313506677C139807058 @default.
- W4313506677 hasConceptScore W4313506677C154945302 @default.
- W4313506677 hasConceptScore W4313506677C15744967 @default.
- W4313506677 hasConceptScore W4313506677C177148314 @default.
- W4313506677 hasConceptScore W4313506677C177264268 @default.
- W4313506677 hasConceptScore W4313506677C199360897 @default.
- W4313506677 hasConceptScore W4313506677C2776214188 @default.
- W4313506677 hasConceptScore W4313506677C2780767217 @default.
- W4313506677 hasConceptScore W4313506677C33923547 @default.