Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313508380> ?p ?o ?g. }
- W4313508380 endingPage "13" @default.
- W4313508380 startingPage "13" @default.
- W4313508380 abstract "Compared with the previous full-waveform data, the new generation of ICESat-2/ATLAS (Advanced Terrain Laser Altimeter System) has a larger footprint overlap density and a smaller footprint area. This study used ATLAS data to estimate forest aboveground biomass (AGB) in a high-altitude, ecologically fragile area. The paper used ATLAS data as the main information source and a typical mountainous area in Shangri-La, northwestern Yunnan Province, China, as the study area. Then, we combined biomass data from 54 ground samples to obtain the estimated AGB of 74,873 footprints using a hyperparametric optimized random forest (RF) model. The total AGB was estimated by combining the best variance function model in geostatistics with the slope that is the covariates. The results showed that among the 50 index parameters and three topographic variables extracted based on ATLAS, six variables showed a significant correlation with AGB. They were, in order, number of canopy photons, Landsat percentage canopy, canopy photon rate, slope, number of photons, and apparent surface reflectance. The optimized random forest model was used to estimate the AGB within the footprints. The model accuracy was the coefficient of determination (R2) = 0.93, the root mean square error (RMSE) = 10.13 t/hm2, and the population estimation accuracy was 83.3%. The optimized model has a good estimation effect and can be used for footprint AGB estimation. The spatial structure analysis of the variance function of footprint AGB showed that the spherical model had the largest fitting accuracy (R2 = 0.65, the residual sum of squares (RSS) = 2.65 × 10−4), the nugget (C0) was 0.21, and the spatial structure ratio was 94.0%. It showed that the AGB of footprints had strong spatial correlation and could be interpolated by kriging. Finally, the slope in the topographic variables was selected as the co-interpolation variable, and cokriging spatial interpolation was performed. Furthermore, a continuous map of AGB spatial distribution was obtained, and the total AGB was 6.07 × 107 t. The spatial distribution of AGB showed the same trend as the distribution of forest stock. The absolute accuracy of the estimation was 82.6%, using the statistical value of the forest resource planning and design survey as a reference. The ATLAS data can improve the accuracy of AGB estimation in mountain forests." @default.
- W4313508380 created "2023-01-06" @default.
- W4313508380 creator A5002676451 @default.
- W4313508380 creator A5034542162 @default.
- W4313508380 creator A5040077315 @default.
- W4313508380 creator A5044846013 @default.
- W4313508380 creator A5084940574 @default.
- W4313508380 date "2022-12-21" @default.
- W4313508380 modified "2023-10-09" @default.
- W4313508380 title "Estimate Forest Aboveground Biomass of Mountain by ICESat-2/ATLAS Data Interacting Cokriging" @default.
- W4313508380 cites W1973263162 @default.
- W4313508380 cites W1980403882 @default.
- W4313508380 cites W1985206079 @default.
- W4313508380 cites W1998011866 @default.
- W4313508380 cites W2006286431 @default.
- W4313508380 cites W2056132907 @default.
- W4313508380 cites W2074421344 @default.
- W4313508380 cites W2089450719 @default.
- W4313508380 cites W2302536943 @default.
- W4313508380 cites W2325764065 @default.
- W4313508380 cites W2407212869 @default.
- W4313508380 cites W2566414281 @default.
- W4313508380 cites W2568967893 @default.
- W4313508380 cites W2593120185 @default.
- W4313508380 cites W2593456876 @default.
- W4313508380 cites W2800017313 @default.
- W4313508380 cites W2801172184 @default.
- W4313508380 cites W2900708551 @default.
- W4313508380 cites W2901674962 @default.
- W4313508380 cites W2904070373 @default.
- W4313508380 cites W2912041037 @default.
- W4313508380 cites W2915170103 @default.
- W4313508380 cites W2920655408 @default.
- W4313508380 cites W2939203819 @default.
- W4313508380 cites W2955388112 @default.
- W4313508380 cites W2964227671 @default.
- W4313508380 cites W3028852288 @default.
- W4313508380 cites W3033817632 @default.
- W4313508380 cites W3111227849 @default.
- W4313508380 cites W4200035802 @default.
- W4313508380 cites W4205285916 @default.
- W4313508380 cites W4205610267 @default.
- W4313508380 cites W4236261977 @default.
- W4313508380 cites W4312750672 @default.
- W4313508380 doi "https://doi.org/10.3390/f14010013" @default.
- W4313508380 hasPublicationYear "2022" @default.
- W4313508380 type Work @default.
- W4313508380 citedByCount "1" @default.
- W4313508380 countsByYear W43135083802023 @default.
- W4313508380 crossrefType "journal-article" @default.
- W4313508380 hasAuthorship W4313508380A5002676451 @default.
- W4313508380 hasAuthorship W4313508380A5034542162 @default.
- W4313508380 hasAuthorship W4313508380A5040077315 @default.
- W4313508380 hasAuthorship W4313508380A5044846013 @default.
- W4313508380 hasAuthorship W4313508380A5084940574 @default.
- W4313508380 hasBestOaLocation W43135083801 @default.
- W4313508380 hasConcept C101000010 @default.
- W4313508380 hasConcept C105795698 @default.
- W4313508380 hasConcept C127313418 @default.
- W4313508380 hasConcept C139945424 @default.
- W4313508380 hasConcept C147103442 @default.
- W4313508380 hasConcept C151730666 @default.
- W4313508380 hasConcept C166957645 @default.
- W4313508380 hasConcept C18903297 @default.
- W4313508380 hasConcept C205649164 @default.
- W4313508380 hasConcept C25989453 @default.
- W4313508380 hasConcept C2776673561 @default.
- W4313508380 hasConcept C28631016 @default.
- W4313508380 hasConcept C33923547 @default.
- W4313508380 hasConcept C39432304 @default.
- W4313508380 hasConcept C54286561 @default.
- W4313508380 hasConcept C58330081 @default.
- W4313508380 hasConcept C62649853 @default.
- W4313508380 hasConcept C86803240 @default.
- W4313508380 hasConcept C97137747 @default.
- W4313508380 hasConceptScore W4313508380C101000010 @default.
- W4313508380 hasConceptScore W4313508380C105795698 @default.
- W4313508380 hasConceptScore W4313508380C127313418 @default.
- W4313508380 hasConceptScore W4313508380C139945424 @default.
- W4313508380 hasConceptScore W4313508380C147103442 @default.
- W4313508380 hasConceptScore W4313508380C151730666 @default.
- W4313508380 hasConceptScore W4313508380C166957645 @default.
- W4313508380 hasConceptScore W4313508380C18903297 @default.
- W4313508380 hasConceptScore W4313508380C205649164 @default.
- W4313508380 hasConceptScore W4313508380C25989453 @default.
- W4313508380 hasConceptScore W4313508380C2776673561 @default.
- W4313508380 hasConceptScore W4313508380C28631016 @default.
- W4313508380 hasConceptScore W4313508380C33923547 @default.
- W4313508380 hasConceptScore W4313508380C39432304 @default.
- W4313508380 hasConceptScore W4313508380C54286561 @default.
- W4313508380 hasConceptScore W4313508380C58330081 @default.
- W4313508380 hasConceptScore W4313508380C62649853 @default.
- W4313508380 hasConceptScore W4313508380C86803240 @default.
- W4313508380 hasConceptScore W4313508380C97137747 @default.
- W4313508380 hasFunder F4320321001 @default.
- W4313508380 hasIssue "1" @default.
- W4313508380 hasLocation W43135083801 @default.
- W4313508380 hasOpenAccess W4313508380 @default.