Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313509021> ?p ?o ?g. }
- W4313509021 endingPage "101836" @default.
- W4313509021 startingPage "101836" @default.
- W4313509021 abstract "Investor sentiment is widely recognized as the major determinant of cryptocurrency prices. Although earlier research has revealed the influence of investor sentiment on cryptocurrency prices, it has not yet generated cohesive empirical findings on an important question: How effective is investor sentiment in predicting cryptocurrency prices? To address this gap, we propose a novel prediction model based on the Bitcoin Misery Index, using trading data for cryptocurrency rather than judgments from individuals who are not Bitcoin investors, as well as bagged support vector regression (BSVR), to forecast Bitcoin prices. The empirical analysis is performed for the period between March 2018 and May 2022. The results of this study suggest that the addition of the sentiment index enhances the predictive performance of BSVR significantly. Moreover, the proposed prediction system, enhanced with an automatic feature selection component, outperforms state-of-the-art methods for predicting cryptocurrency for the next 30 days." @default.
- W4313509021 created "2023-01-06" @default.
- W4313509021 creator A5025966463 @default.
- W4313509021 creator A5036484429 @default.
- W4313509021 creator A5073959695 @default.
- W4313509021 date "2023-01-01" @default.
- W4313509021 modified "2023-10-14" @default.
- W4313509021 title "How well do investor sentiment and ensemble learning predict Bitcoin prices?" @default.
- W4313509021 cites W1535146832 @default.
- W4313509021 cites W1798106456 @default.
- W4313509021 cites W2097074201 @default.
- W4313509021 cites W2127716901 @default.
- W4313509021 cites W2167101736 @default.
- W4313509021 cites W2601386739 @default.
- W4313509021 cites W2771814524 @default.
- W4313509021 cites W2774345737 @default.
- W4313509021 cites W2803247515 @default.
- W4313509021 cites W2806906525 @default.
- W4313509021 cites W2816105620 @default.
- W4313509021 cites W2888245487 @default.
- W4313509021 cites W2892922781 @default.
- W4313509021 cites W2900785697 @default.
- W4313509021 cites W2900967578 @default.
- W4313509021 cites W2902408730 @default.
- W4313509021 cites W2903931026 @default.
- W4313509021 cites W2906922093 @default.
- W4313509021 cites W2914862314 @default.
- W4313509021 cites W2921255468 @default.
- W4313509021 cites W2942792437 @default.
- W4313509021 cites W2946011181 @default.
- W4313509021 cites W2953614733 @default.
- W4313509021 cites W2955442069 @default.
- W4313509021 cites W2962996339 @default.
- W4313509021 cites W2981930871 @default.
- W4313509021 cites W2994945673 @default.
- W4313509021 cites W2998669639 @default.
- W4313509021 cites W3000853296 @default.
- W4313509021 cites W3003538339 @default.
- W4313509021 cites W3003975888 @default.
- W4313509021 cites W3010776992 @default.
- W4313509021 cites W3022076500 @default.
- W4313509021 cites W3026175620 @default.
- W4313509021 cites W3037564305 @default.
- W4313509021 cites W3041929805 @default.
- W4313509021 cites W3043099563 @default.
- W4313509021 cites W3045217887 @default.
- W4313509021 cites W3048753459 @default.
- W4313509021 cites W3083125023 @default.
- W4313509021 cites W3100933494 @default.
- W4313509021 cites W3124959131 @default.
- W4313509021 cites W3128406184 @default.
- W4313509021 cites W3134207303 @default.
- W4313509021 cites W3138333603 @default.
- W4313509021 cites W3157578279 @default.
- W4313509021 cites W3162669818 @default.
- W4313509021 cites W3163058276 @default.
- W4313509021 cites W3164970439 @default.
- W4313509021 cites W3190721992 @default.
- W4313509021 cites W3193286666 @default.
- W4313509021 cites W3199876671 @default.
- W4313509021 cites W3200363476 @default.
- W4313509021 cites W3200854647 @default.
- W4313509021 cites W4206968421 @default.
- W4313509021 cites W4212883601 @default.
- W4313509021 cites W4220935158 @default.
- W4313509021 doi "https://doi.org/10.1016/j.ribaf.2022.101836" @default.
- W4313509021 hasPublicationYear "2023" @default.
- W4313509021 type Work @default.
- W4313509021 citedByCount "1" @default.
- W4313509021 countsByYear W43135090212023 @default.
- W4313509021 crossrefType "journal-article" @default.
- W4313509021 hasAuthorship W4313509021A5025966463 @default.
- W4313509021 hasAuthorship W4313509021A5036484429 @default.
- W4313509021 hasAuthorship W4313509021A5073959695 @default.
- W4313509021 hasConcept C105795698 @default.
- W4313509021 hasConcept C120936955 @default.
- W4313509021 hasConcept C12267149 @default.
- W4313509021 hasConcept C136764020 @default.
- W4313509021 hasConcept C148483581 @default.
- W4313509021 hasConcept C149782125 @default.
- W4313509021 hasConcept C154945302 @default.
- W4313509021 hasConcept C162324750 @default.
- W4313509021 hasConcept C180706569 @default.
- W4313509021 hasConcept C2777382242 @default.
- W4313509021 hasConcept C33923547 @default.
- W4313509021 hasConcept C38652104 @default.
- W4313509021 hasConcept C41008148 @default.
- W4313509021 hasConceptScore W4313509021C105795698 @default.
- W4313509021 hasConceptScore W4313509021C120936955 @default.
- W4313509021 hasConceptScore W4313509021C12267149 @default.
- W4313509021 hasConceptScore W4313509021C136764020 @default.
- W4313509021 hasConceptScore W4313509021C148483581 @default.
- W4313509021 hasConceptScore W4313509021C149782125 @default.
- W4313509021 hasConceptScore W4313509021C154945302 @default.
- W4313509021 hasConceptScore W4313509021C162324750 @default.
- W4313509021 hasConceptScore W4313509021C180706569 @default.
- W4313509021 hasConceptScore W4313509021C2777382242 @default.
- W4313509021 hasConceptScore W4313509021C33923547 @default.