Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313509103> ?p ?o ?g. }
- W4313509103 endingPage "327" @default.
- W4313509103 startingPage "327" @default.
- W4313509103 abstract "In the process of extracting tailings ponds from large scene remote sensing images, semantic segmentation models usually perform calculations on all small-size remote sensing images segmented by the sliding window method. However, some of these small-size remote sensing images do not have tailings ponds, and their calculations not only affect the model accuracy, but also affect the model speed. For this problem, we proposed a fast tailings pond extraction method (Scene-Classification-Sematic-Segmentation, SC-SS) that couples scene classification and semantic segmentation models. The method can map tailings ponds rapidly and accurately in large scene remote sensing images. There were two parts in the method: a scene classification model, and a semantic segmentation model. Among them, the scene classification model adopted the lightweight network MobileNetv2. With the help of this network, the scenes containing tailings ponds can be quickly screened out from the large scene remote sensing images, and the interference of scenes without tailings ponds can be reduced. The semantic segmentation model used the U-Net model to finely segment objects from the tailings pond scenes. In addition, the encoder of the U-Net model was replaced by the VGG16 network with stronger feature extraction ability, which improves the model’s accuracy. In this paper, the Google Earth images of Luanping County were used to create the tailings pond scene classification dataset and tailings pond semantic segmentation dataset, and based on these datasets, the training and testing of models were completed. According to the experimental results, the extraction accuracy (Intersection Over Union, IOU) of the SC-SS model was 93.48%. The extraction accuracy of IOU was 15.12% higher than the U-Net model, while the extraction time was shortened by 35.72%. This research is of great importance to the remote sensing dynamic observation of tailings ponds on a large scale." @default.
- W4313509103 created "2023-01-06" @default.
- W4313509103 creator A5030457089 @default.
- W4313509103 creator A5049846276 @default.
- W4313509103 creator A5054752135 @default.
- W4313509103 creator A5059631163 @default.
- W4313509103 creator A5059796616 @default.
- W4313509103 creator A5069612314 @default.
- W4313509103 creator A5079105872 @default.
- W4313509103 date "2023-01-05" @default.
- W4313509103 modified "2023-09-26" @default.
- W4313509103 title "Fast Tailings Pond Mapping Exploiting Large Scene Remote Sensing Images by Coupling Scene Classification and Sematic Segmentation Models" @default.
- W4313509103 cites W2005254913 @default.
- W4313509103 cites W2157528304 @default.
- W4313509103 cites W2194775991 @default.
- W4313509103 cites W2535310531 @default.
- W4313509103 cites W2725897987 @default.
- W4313509103 cites W2897086142 @default.
- W4313509103 cites W2911139005 @default.
- W4313509103 cites W2963163009 @default.
- W4313509103 cites W2988247561 @default.
- W4313509103 cites W2992240579 @default.
- W4313509103 cites W3008439211 @default.
- W4313509103 cites W3011525152 @default.
- W4313509103 cites W3011983117 @default.
- W4313509103 cites W3015788359 @default.
- W4313509103 cites W3027201985 @default.
- W4313509103 cites W3028172981 @default.
- W4313509103 cites W3031568480 @default.
- W4313509103 cites W3090406409 @default.
- W4313509103 cites W3110908156 @default.
- W4313509103 cites W3121661546 @default.
- W4313509103 cites W3128476715 @default.
- W4313509103 cites W3132826520 @default.
- W4313509103 cites W3133792849 @default.
- W4313509103 cites W3158617082 @default.
- W4313509103 cites W3169865585 @default.
- W4313509103 cites W4200006747 @default.
- W4313509103 cites W4205716095 @default.
- W4313509103 cites W4226264593 @default.
- W4313509103 cites W4281698396 @default.
- W4313509103 cites W4285308517 @default.
- W4313509103 cites W4294366793 @default.
- W4313509103 cites W4312568229 @default.
- W4313509103 cites W639708223 @default.
- W4313509103 cites W783048802 @default.
- W4313509103 doi "https://doi.org/10.3390/rs15020327" @default.
- W4313509103 hasPublicationYear "2023" @default.
- W4313509103 type Work @default.
- W4313509103 citedByCount "2" @default.
- W4313509103 countsByYear W43135091032023 @default.
- W4313509103 crossrefType "journal-article" @default.
- W4313509103 hasAuthorship W4313509103A5030457089 @default.
- W4313509103 hasAuthorship W4313509103A5049846276 @default.
- W4313509103 hasAuthorship W4313509103A5054752135 @default.
- W4313509103 hasAuthorship W4313509103A5059631163 @default.
- W4313509103 hasAuthorship W4313509103A5059796616 @default.
- W4313509103 hasAuthorship W4313509103A5069612314 @default.
- W4313509103 hasAuthorship W4313509103A5079105872 @default.
- W4313509103 hasBestOaLocation W43135091031 @default.
- W4313509103 hasConcept C124504099 @default.
- W4313509103 hasConcept C127313418 @default.
- W4313509103 hasConcept C153180895 @default.
- W4313509103 hasConcept C154945302 @default.
- W4313509103 hasConcept C191897082 @default.
- W4313509103 hasConcept C192562407 @default.
- W4313509103 hasConcept C2776648687 @default.
- W4313509103 hasConcept C31972630 @default.
- W4313509103 hasConcept C41008148 @default.
- W4313509103 hasConcept C5166401 @default.
- W4313509103 hasConcept C52622490 @default.
- W4313509103 hasConcept C62649853 @default.
- W4313509103 hasConcept C89600930 @default.
- W4313509103 hasConceptScore W4313509103C124504099 @default.
- W4313509103 hasConceptScore W4313509103C127313418 @default.
- W4313509103 hasConceptScore W4313509103C153180895 @default.
- W4313509103 hasConceptScore W4313509103C154945302 @default.
- W4313509103 hasConceptScore W4313509103C191897082 @default.
- W4313509103 hasConceptScore W4313509103C192562407 @default.
- W4313509103 hasConceptScore W4313509103C2776648687 @default.
- W4313509103 hasConceptScore W4313509103C31972630 @default.
- W4313509103 hasConceptScore W4313509103C41008148 @default.
- W4313509103 hasConceptScore W4313509103C5166401 @default.
- W4313509103 hasConceptScore W4313509103C52622490 @default.
- W4313509103 hasConceptScore W4313509103C62649853 @default.
- W4313509103 hasConceptScore W4313509103C89600930 @default.
- W4313509103 hasFunder F4320335787 @default.
- W4313509103 hasIssue "2" @default.
- W4313509103 hasLocation W43135091031 @default.
- W4313509103 hasOpenAccess W4313509103 @default.
- W4313509103 hasPrimaryLocation W43135091031 @default.
- W4313509103 hasRelatedWork W1669643531 @default.
- W4313509103 hasRelatedWork W1982826852 @default.
- W4313509103 hasRelatedWork W2005437358 @default.
- W4313509103 hasRelatedWork W2008656436 @default.
- W4313509103 hasRelatedWork W2023558673 @default.
- W4313509103 hasRelatedWork W2110230079 @default.
- W4313509103 hasRelatedWork W2134924024 @default.