Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313509554> ?p ?o ?g. }
- W4313509554 endingPage "27" @default.
- W4313509554 startingPage "1" @default.
- W4313509554 abstract "Gradient tree boosting is a powerful machine learning technique that has shown good performance in predicting a variety of outcomes. However, when applied to hierarchical (e.g., longitudinal or clustered) data, the predictive performance of gradient tree boosting may be harmed by ignoring the hierarchical structure, and may be improved by accounting for it. Tree-based methods such as regression trees and random forests have already been extended to hierarchical data settings by combining them with the linear mixed effects model (MEM). In the present article, we add to this literature by proposing two algorithms to estimate a combination of the MEM and gradient tree boosting. We report on two simulation studies that (i) investigate the predictive performance of the two MEM boosting algorithms and (ii) compare them to standard gradient tree boosting, standard random forest, and other existing methods for hierarchical data (MEM, MEM random forests, model-based boosting, Bayesian additive regression trees [BART]). We found substantial improvements in the predictive performance of our MEM boosting algorithms over standard boosting when the random effects were non-negligible. MEM boosting as well as BART showed a predictive performance similar to the correctly specified MEM (i.e., the benchmark model), and overall outperformed the model-based boosting and random forest approaches." @default.
- W4313509554 created "2023-01-06" @default.
- W4313509554 creator A5030640837 @default.
- W4313509554 creator A5055189096 @default.
- W4313509554 creator A5057523084 @default.
- W4313509554 date "2023-01-05" @default.
- W4313509554 modified "2023-09-28" @default.
- W4313509554 title "Gradient Tree Boosting for Hierarchical Data" @default.
- W4313509554 cites W1587682423 @default.
- W4313509554 cites W1678356000 @default.
- W4313509554 cites W1875061881 @default.
- W4313509554 cites W1951724000 @default.
- W4313509554 cites W1984622488 @default.
- W4313509554 cites W1996215710 @default.
- W4313509554 cites W1997799412 @default.
- W4313509554 cites W2006353560 @default.
- W4313509554 cites W2016603580 @default.
- W4313509554 cites W2039380015 @default.
- W4313509554 cites W2045803758 @default.
- W4313509554 cites W2051254744 @default.
- W4313509554 cites W2060551910 @default.
- W4313509554 cites W2064279221 @default.
- W4313509554 cites W2070230130 @default.
- W4313509554 cites W2070493638 @default.
- W4313509554 cites W2071721660 @default.
- W4313509554 cites W2123998733 @default.
- W4313509554 cites W2161564122 @default.
- W4313509554 cites W2164351958 @default.
- W4313509554 cites W2216356458 @default.
- W4313509554 cites W2284729062 @default.
- W4313509554 cites W2560663030 @default.
- W4313509554 cites W2787427645 @default.
- W4313509554 cites W2787894218 @default.
- W4313509554 cites W2890256689 @default.
- W4313509554 cites W2911964244 @default.
- W4313509554 cites W2964210171 @default.
- W4313509554 cites W3007150960 @default.
- W4313509554 cites W3029658104 @default.
- W4313509554 cites W3048546932 @default.
- W4313509554 cites W3060687736 @default.
- W4313509554 cites W3099006712 @default.
- W4313509554 cites W3099723433 @default.
- W4313509554 cites W3103169725 @default.
- W4313509554 cites W3121191917 @default.
- W4313509554 cites W3192968377 @default.
- W4313509554 cites W4212796187 @default.
- W4313509554 cites W4229930971 @default.
- W4313509554 cites W96431911 @default.
- W4313509554 doi "https://doi.org/10.1080/00273171.2022.2146638" @default.
- W4313509554 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36602080" @default.
- W4313509554 hasPublicationYear "2023" @default.
- W4313509554 type Work @default.
- W4313509554 citedByCount "0" @default.
- W4313509554 crossrefType "journal-article" @default.
- W4313509554 hasAuthorship W4313509554A5030640837 @default.
- W4313509554 hasAuthorship W4313509554A5055189096 @default.
- W4313509554 hasAuthorship W4313509554A5057523084 @default.
- W4313509554 hasConcept C105795698 @default.
- W4313509554 hasConcept C113174947 @default.
- W4313509554 hasConcept C119857082 @default.
- W4313509554 hasConcept C12267149 @default.
- W4313509554 hasConcept C13280743 @default.
- W4313509554 hasConcept C134306372 @default.
- W4313509554 hasConcept C154945302 @default.
- W4313509554 hasConcept C169258074 @default.
- W4313509554 hasConcept C185798385 @default.
- W4313509554 hasConcept C205649164 @default.
- W4313509554 hasConcept C33923547 @default.
- W4313509554 hasConcept C41008148 @default.
- W4313509554 hasConcept C46686674 @default.
- W4313509554 hasConcept C52001869 @default.
- W4313509554 hasConcept C70153297 @default.
- W4313509554 hasConcept C83546350 @default.
- W4313509554 hasConcept C84525736 @default.
- W4313509554 hasConceptScore W4313509554C105795698 @default.
- W4313509554 hasConceptScore W4313509554C113174947 @default.
- W4313509554 hasConceptScore W4313509554C119857082 @default.
- W4313509554 hasConceptScore W4313509554C12267149 @default.
- W4313509554 hasConceptScore W4313509554C13280743 @default.
- W4313509554 hasConceptScore W4313509554C134306372 @default.
- W4313509554 hasConceptScore W4313509554C154945302 @default.
- W4313509554 hasConceptScore W4313509554C169258074 @default.
- W4313509554 hasConceptScore W4313509554C185798385 @default.
- W4313509554 hasConceptScore W4313509554C205649164 @default.
- W4313509554 hasConceptScore W4313509554C33923547 @default.
- W4313509554 hasConceptScore W4313509554C41008148 @default.
- W4313509554 hasConceptScore W4313509554C46686674 @default.
- W4313509554 hasConceptScore W4313509554C52001869 @default.
- W4313509554 hasConceptScore W4313509554C70153297 @default.
- W4313509554 hasConceptScore W4313509554C83546350 @default.
- W4313509554 hasConceptScore W4313509554C84525736 @default.
- W4313509554 hasLocation W43135095541 @default.
- W4313509554 hasLocation W43135095542 @default.
- W4313509554 hasOpenAccess W4313509554 @default.
- W4313509554 hasPrimaryLocation W43135095541 @default.
- W4313509554 hasRelatedWork W3100297620 @default.
- W4313509554 hasRelatedWork W3204641204 @default.
- W4313509554 hasRelatedWork W3210696866 @default.