Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313509580> ?p ?o ?g. }
- W4313509580 endingPage "998" @default.
- W4313509580 startingPage "998" @default.
- W4313509580 abstract "Drone images from an experimental field cropped with sugar beet with a high diffusion of weeds taken from different flying altitudes were used to develop and test a machine learning method for vegetation patch identification. Georeferenced images were combined with a hue-based preprocessing analysis, digital transformation by an image embedder, and evaluation by supervised learning. Specifically, six of the most common machine learning algorithms were applied (i.e., logistic regression, k-nearest neighbors, decision tree, random forest, neural network, and support-vector machine). The proposed method was able to precisely recognize crops and weeds throughout a wide cultivation field, training from single partial images. The information has been designed to be easily integrated into autonomous weed management systems with the aim of reducing the use of water, nutrients, and herbicides for precision agriculture." @default.
- W4313509580 created "2023-01-06" @default.
- W4313509580 creator A5030687432 @default.
- W4313509580 creator A5035783759 @default.
- W4313509580 creator A5036576440 @default.
- W4313509580 creator A5048744478 @default.
- W4313509580 date "2023-01-05" @default.
- W4313509580 modified "2023-10-14" @default.
- W4313509580 title "A New Procedure for Combining UAV-Based Imagery and Machine Learning in Precision Agriculture" @default.
- W4313509580 cites W1973514305 @default.
- W4313509580 cites W2011325105 @default.
- W4313509580 cites W2030083859 @default.
- W4313509580 cites W2038782607 @default.
- W4313509580 cites W2041221361 @default.
- W4313509580 cites W2049694710 @default.
- W4313509580 cites W2100483895 @default.
- W4313509580 cites W2120554089 @default.
- W4313509580 cites W2126727010 @default.
- W4313509580 cites W2145243492 @default.
- W4313509580 cites W2151554678 @default.
- W4313509580 cites W2166645898 @default.
- W4313509580 cites W2300198213 @default.
- W4313509580 cites W2902688413 @default.
- W4313509580 cites W2913227116 @default.
- W4313509580 cites W2936791947 @default.
- W4313509580 cites W2979543333 @default.
- W4313509580 cites W3004192481 @default.
- W4313509580 cites W3106626166 @default.
- W4313509580 cites W3115703702 @default.
- W4313509580 cites W3120697286 @default.
- W4313509580 cites W3164016092 @default.
- W4313509580 cites W4280610169 @default.
- W4313509580 cites W4281263180 @default.
- W4313509580 cites W4288450909 @default.
- W4313509580 cites W4308571551 @default.
- W4313509580 doi "https://doi.org/10.3390/su15020998" @default.
- W4313509580 hasPublicationYear "2023" @default.
- W4313509580 type Work @default.
- W4313509580 citedByCount "2" @default.
- W4313509580 countsByYear W43135095802023 @default.
- W4313509580 crossrefType "journal-article" @default.
- W4313509580 hasAuthorship W4313509580A5030687432 @default.
- W4313509580 hasAuthorship W4313509580A5035783759 @default.
- W4313509580 hasAuthorship W4313509580A5036576440 @default.
- W4313509580 hasAuthorship W4313509580A5048744478 @default.
- W4313509580 hasBestOaLocation W43135095801 @default.
- W4313509580 hasConcept C104317684 @default.
- W4313509580 hasConcept C118518473 @default.
- W4313509580 hasConcept C119857082 @default.
- W4313509580 hasConcept C120217122 @default.
- W4313509580 hasConcept C12267149 @default.
- W4313509580 hasConcept C153180895 @default.
- W4313509580 hasConcept C154945302 @default.
- W4313509580 hasConcept C166957645 @default.
- W4313509580 hasConcept C169258074 @default.
- W4313509580 hasConcept C185592680 @default.
- W4313509580 hasConcept C202444582 @default.
- W4313509580 hasConcept C204241405 @default.
- W4313509580 hasConcept C205649164 @default.
- W4313509580 hasConcept C31972630 @default.
- W4313509580 hasConcept C33923547 @default.
- W4313509580 hasConcept C34736171 @default.
- W4313509580 hasConcept C41008148 @default.
- W4313509580 hasConcept C55493867 @default.
- W4313509580 hasConcept C84525736 @default.
- W4313509580 hasConcept C9652623 @default.
- W4313509580 hasConceptScore W4313509580C104317684 @default.
- W4313509580 hasConceptScore W4313509580C118518473 @default.
- W4313509580 hasConceptScore W4313509580C119857082 @default.
- W4313509580 hasConceptScore W4313509580C120217122 @default.
- W4313509580 hasConceptScore W4313509580C12267149 @default.
- W4313509580 hasConceptScore W4313509580C153180895 @default.
- W4313509580 hasConceptScore W4313509580C154945302 @default.
- W4313509580 hasConceptScore W4313509580C166957645 @default.
- W4313509580 hasConceptScore W4313509580C169258074 @default.
- W4313509580 hasConceptScore W4313509580C185592680 @default.
- W4313509580 hasConceptScore W4313509580C202444582 @default.
- W4313509580 hasConceptScore W4313509580C204241405 @default.
- W4313509580 hasConceptScore W4313509580C205649164 @default.
- W4313509580 hasConceptScore W4313509580C31972630 @default.
- W4313509580 hasConceptScore W4313509580C33923547 @default.
- W4313509580 hasConceptScore W4313509580C34736171 @default.
- W4313509580 hasConceptScore W4313509580C41008148 @default.
- W4313509580 hasConceptScore W4313509580C55493867 @default.
- W4313509580 hasConceptScore W4313509580C84525736 @default.
- W4313509580 hasConceptScore W4313509580C9652623 @default.
- W4313509580 hasIssue "2" @default.
- W4313509580 hasLocation W43135095801 @default.
- W4313509580 hasLocation W43135095802 @default.
- W4313509580 hasOpenAccess W4313509580 @default.
- W4313509580 hasPrimaryLocation W43135095801 @default.
- W4313509580 hasRelatedWork W3034132578 @default.
- W4313509580 hasRelatedWork W3195168932 @default.
- W4313509580 hasRelatedWork W4308191010 @default.
- W4313509580 hasRelatedWork W4321636153 @default.
- W4313509580 hasRelatedWork W4377964522 @default.
- W4313509580 hasRelatedWork W4381414210 @default.
- W4313509580 hasRelatedWork W4383535405 @default.