Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313525035> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4313525035 abstract "This paper investigates the accuracy of the different Machine Learning algorithms used for calorie estimation through food image processing. Moreover, the most popular food image datasets and calorie calculation techniques will be compared. The conducted comparative study considers the accuracy of ML algorithms and the features of training and testing food image datasets. It utilizes the research efforts in the last five years to propose the most reliable combination of techniques and data to develop an efficient food image processing system. In terms of Machine Learning algorithms, the comparative study results showed that convolutional neural network (CNN) and support vector machine (SVM) algorithms are the most reliable machine learning algorithms for food image processing. Moreover, the most suitable food image datasets for training and testing food image processing ML algorithms are Food-101, UEC-Food100, and ECUSTFD. And in terms of the calorie estimation techniques, the mathematical model technique was the most efficient approach to calculating the food calorie content. The implication of this study is to guide developers to improve the current food image processing applications by using reliable algorithms, datasets, and computation strategies." @default.
- W4313525035 created "2023-01-06" @default.
- W4313525035 creator A5003417758 @default.
- W4313525035 creator A5003543901 @default.
- W4313525035 creator A5047852904 @default.
- W4313525035 creator A5081414719 @default.
- W4313525035 date "2022-12-07" @default.
- W4313525035 modified "2023-09-30" @default.
- W4313525035 title "Comparison of Food Calorie Measurement Using Image Processing and Machine Learning Techniques" @default.
- W4313525035 cites W1982918230 @default.
- W4313525035 cites W2794150030 @default.
- W4313525035 cites W2807481974 @default.
- W4313525035 cites W2810664981 @default.
- W4313525035 cites W2903855512 @default.
- W4313525035 cites W2941375172 @default.
- W4313525035 cites W2955735082 @default.
- W4313525035 cites W2962691457 @default.
- W4313525035 cites W2981065027 @default.
- W4313525035 cites W3009670213 @default.
- W4313525035 cites W3015709712 @default.
- W4313525035 cites W3020362460 @default.
- W4313525035 cites W3025736586 @default.
- W4313525035 cites W3152805968 @default.
- W4313525035 cites W3160270837 @default.
- W4313525035 cites W3163490723 @default.
- W4313525035 cites W3166678022 @default.
- W4313525035 doi "https://doi.org/10.1109/icspis57063.2022.10002488" @default.
- W4313525035 hasPublicationYear "2022" @default.
- W4313525035 type Work @default.
- W4313525035 citedByCount "0" @default.
- W4313525035 crossrefType "proceedings-article" @default.
- W4313525035 hasAuthorship W4313525035A5003417758 @default.
- W4313525035 hasAuthorship W4313525035A5003543901 @default.
- W4313525035 hasAuthorship W4313525035A5047852904 @default.
- W4313525035 hasAuthorship W4313525035A5081414719 @default.
- W4313525035 hasConcept C115961682 @default.
- W4313525035 hasConcept C119857082 @default.
- W4313525035 hasConcept C12267149 @default.
- W4313525035 hasConcept C153180895 @default.
- W4313525035 hasConcept C154945302 @default.
- W4313525035 hasConcept C41008148 @default.
- W4313525035 hasConcept C50644808 @default.
- W4313525035 hasConcept C81363708 @default.
- W4313525035 hasConcept C9417928 @default.
- W4313525035 hasConceptScore W4313525035C115961682 @default.
- W4313525035 hasConceptScore W4313525035C119857082 @default.
- W4313525035 hasConceptScore W4313525035C12267149 @default.
- W4313525035 hasConceptScore W4313525035C153180895 @default.
- W4313525035 hasConceptScore W4313525035C154945302 @default.
- W4313525035 hasConceptScore W4313525035C41008148 @default.
- W4313525035 hasConceptScore W4313525035C50644808 @default.
- W4313525035 hasConceptScore W4313525035C81363708 @default.
- W4313525035 hasConceptScore W4313525035C9417928 @default.
- W4313525035 hasLocation W43135250351 @default.
- W4313525035 hasOpenAccess W4313525035 @default.
- W4313525035 hasPrimaryLocation W43135250351 @default.
- W4313525035 hasRelatedWork W2041399278 @default.
- W4313525035 hasRelatedWork W2099369243 @default.
- W4313525035 hasRelatedWork W2996933976 @default.
- W4313525035 hasRelatedWork W3193301557 @default.
- W4313525035 hasRelatedWork W3208266890 @default.
- W4313525035 hasRelatedWork W4205958290 @default.
- W4313525035 hasRelatedWork W4223656335 @default.
- W4313525035 hasRelatedWork W4285503465 @default.
- W4313525035 hasRelatedWork W4313451456 @default.
- W4313525035 hasRelatedWork W2345184372 @default.
- W4313525035 isParatext "false" @default.
- W4313525035 isRetracted "false" @default.
- W4313525035 workType "article" @default.