Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313525046> ?p ?o ?g. }
- W4313525046 endingPage "57" @default.
- W4313525046 startingPage "45" @default.
- W4313525046 abstract "Phase retrieval consists in the recovery of a complex-valued signal from intensity-only measurements. As it pervades a broad variety of applications, many researchers have striven to develop phase-retrieval algorithms. Classical approaches involve techniques as varied as generic gradient-descent routines or specialized spectral methods, to name a few. Yet, the phase-recovery problem remains a challenge to this day. Recently, however, advances in machine learning have revitalized the study of phase retrieval in two ways: significant theoretical advances have emerged from the analogy between phase retrieval and single-layer neural networks; practical breakthroughs have been obtained thanks to deep-learning regularization. In this tutorial, we review phase retrieval under a unifying framework that encompasses classical and machine-learning methods. We focus on three key elements: applications, overview of recent reconstruction algorithms, and the latest theoretical results." @default.
- W4313525046 created "2023-01-06" @default.
- W4313525046 creator A5027830035 @default.
- W4313525046 creator A5042803320 @default.
- W4313525046 creator A5043933499 @default.
- W4313525046 creator A5057509369 @default.
- W4313525046 creator A5059038574 @default.
- W4313525046 creator A5066436983 @default.
- W4313525046 date "2023-01-01" @default.
- W4313525046 modified "2023-09-25" @default.
- W4313525046 title "Phase Retrieval: From Computational Imaging to Machine Learning: A tutorial" @default.
- W4313525046 cites W1847564501 @default.
- W4313525046 cites W1992857901 @default.
- W4313525046 cites W2000443157 @default.
- W4313525046 cites W2015911499 @default.
- W4313525046 cites W2027427189 @default.
- W4313525046 cites W2040192961 @default.
- W4313525046 cites W2047602908 @default.
- W4313525046 cites W2078397124 @default.
- W4313525046 cites W2143847003 @default.
- W4313525046 cites W2145080587 @default.
- W4313525046 cites W2156719288 @default.
- W4313525046 cites W2165161875 @default.
- W4313525046 cites W2566505556 @default.
- W4313525046 cites W2612688942 @default.
- W4313525046 cites W2698354080 @default.
- W4313525046 cites W2753427988 @default.
- W4313525046 cites W2765756210 @default.
- W4313525046 cites W2792642233 @default.
- W4313525046 cites W2887566712 @default.
- W4313525046 cites W2899900971 @default.
- W4313525046 cites W2962760202 @default.
- W4313525046 cites W2962941403 @default.
- W4313525046 cites W2963291912 @default.
- W4313525046 cites W2963841451 @default.
- W4313525046 cites W2964130120 @default.
- W4313525046 cites W2995957055 @default.
- W4313525046 cites W3017940382 @default.
- W4313525046 cites W3020963216 @default.
- W4313525046 cites W3102206315 @default.
- W4313525046 cites W3103875018 @default.
- W4313525046 cites W3106678933 @default.
- W4313525046 cites W3129605435 @default.
- W4313525046 cites W3169803339 @default.
- W4313525046 cites W3198155432 @default.
- W4313525046 cites W4211133289 @default.
- W4313525046 cites W4315606555 @default.
- W4313525046 doi "https://doi.org/10.1109/msp.2022.3219240" @default.
- W4313525046 hasPublicationYear "2023" @default.
- W4313525046 type Work @default.
- W4313525046 citedByCount "4" @default.
- W4313525046 countsByYear W43135250462023 @default.
- W4313525046 crossrefType "journal-article" @default.
- W4313525046 hasAuthorship W4313525046A5027830035 @default.
- W4313525046 hasAuthorship W4313525046A5042803320 @default.
- W4313525046 hasAuthorship W4313525046A5043933499 @default.
- W4313525046 hasAuthorship W4313525046A5057509369 @default.
- W4313525046 hasAuthorship W4313525046A5059038574 @default.
- W4313525046 hasAuthorship W4313525046A5066436983 @default.
- W4313525046 hasBestOaLocation W43135250462 @default.
- W4313525046 hasConcept C102519508 @default.
- W4313525046 hasConcept C108583219 @default.
- W4313525046 hasConcept C119857082 @default.
- W4313525046 hasConcept C120665830 @default.
- W4313525046 hasConcept C121332964 @default.
- W4313525046 hasConcept C134306372 @default.
- W4313525046 hasConcept C136197465 @default.
- W4313525046 hasConcept C138885662 @default.
- W4313525046 hasConcept C153258448 @default.
- W4313525046 hasConcept C154945302 @default.
- W4313525046 hasConcept C192209626 @default.
- W4313525046 hasConcept C26517878 @default.
- W4313525046 hasConcept C2776135515 @default.
- W4313525046 hasConcept C33923547 @default.
- W4313525046 hasConcept C38652104 @default.
- W4313525046 hasConcept C41008148 @default.
- W4313525046 hasConcept C41895202 @default.
- W4313525046 hasConcept C50644808 @default.
- W4313525046 hasConcept C521332185 @default.
- W4313525046 hasConcept C81793267 @default.
- W4313525046 hasConceptScore W4313525046C102519508 @default.
- W4313525046 hasConceptScore W4313525046C108583219 @default.
- W4313525046 hasConceptScore W4313525046C119857082 @default.
- W4313525046 hasConceptScore W4313525046C120665830 @default.
- W4313525046 hasConceptScore W4313525046C121332964 @default.
- W4313525046 hasConceptScore W4313525046C134306372 @default.
- W4313525046 hasConceptScore W4313525046C136197465 @default.
- W4313525046 hasConceptScore W4313525046C138885662 @default.
- W4313525046 hasConceptScore W4313525046C153258448 @default.
- W4313525046 hasConceptScore W4313525046C154945302 @default.
- W4313525046 hasConceptScore W4313525046C192209626 @default.
- W4313525046 hasConceptScore W4313525046C26517878 @default.
- W4313525046 hasConceptScore W4313525046C2776135515 @default.
- W4313525046 hasConceptScore W4313525046C33923547 @default.
- W4313525046 hasConceptScore W4313525046C38652104 @default.
- W4313525046 hasConceptScore W4313525046C41008148 @default.
- W4313525046 hasConceptScore W4313525046C41895202 @default.
- W4313525046 hasConceptScore W4313525046C50644808 @default.