Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313527863> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4313527863 abstract "We present a new learning paradigm, that is, cross-supervised learning, and explore its use for cloud detection. The cross-supervised learning paradigm is characterized by both supervised training and mutually supervised training, and is performed by two base networks. In addition to the individual supervised training for labeled data, the two base networks perform the mutually supervised training using prediction results provided by each other for unlabeled data. Specifically, we develop In-extensive Nets for implementing the base networks. The In-extensive Nets consist of two Intensive Nets and are trained using the cross-supervised learning paradigm. The Intensive Net leverages information from the labeled cloudy images using a focal attention guidance module (FAGM) and a regression block. The cross-supervised learning paradigm empowers the In-extensive Nets to learn from both labeled and unlabeled cloudy images, substantially reducing the number of labeled cloudy images (that tend to cost expensive manual effort) required for training. Experimental results verify that In-extensive Nets perform well and have an obvious advantage in the situations where there are only a few labeled cloudy images available for training. The implementation code for the proposed paradigm is available at https://gitee.com/kang_wu/in-extensive-nets." @default.
- W4313527863 created "2023-01-06" @default.
- W4313527863 creator A5042565510 @default.
- W4313527863 creator A5082617670 @default.
- W4313527863 creator A5088173589 @default.
- W4313527863 creator A5088966923 @default.
- W4313527863 date "2023-01-03" @default.
- W4313527863 modified "2023-10-15" @default.
- W4313527863 title "Cross-supervised learning for cloud detection" @default.
- W4313527863 cites W1603854802 @default.
- W4313527863 cites W1677182931 @default.
- W4313527863 cites W1964940342 @default.
- W4313527863 cites W1985577182 @default.
- W4313527863 cites W1992085857 @default.
- W4313527863 cites W1998102034 @default.
- W4313527863 cites W2019812041 @default.
- W4313527863 cites W2025745000 @default.
- W4313527863 cites W2028240797 @default.
- W4313527863 cites W2089468765 @default.
- W4313527863 cites W2112796928 @default.
- W4313527863 cites W2118382442 @default.
- W4313527863 cites W2412782625 @default.
- W4313527863 cites W2560023338 @default.
- W4313527863 cites W2584156879 @default.
- W4313527863 cites W2602844676 @default.
- W4313527863 cites W2605495192 @default.
- W4313527863 cites W2605847660 @default.
- W4313527863 cites W2608092940 @default.
- W4313527863 cites W2610166850 @default.
- W4313527863 cites W2763822693 @default.
- W4313527863 cites W2810069315 @default.
- W4313527863 cites W2910101086 @default.
- W4313527863 cites W2919115771 @default.
- W4313527863 cites W2927122915 @default.
- W4313527863 cites W2946072066 @default.
- W4313527863 cites W2983717970 @default.
- W4313527863 cites W3028160024 @default.
- W4313527863 cites W3100667366 @default.
- W4313527863 cites W3122040251 @default.
- W4313527863 cites W3181315188 @default.
- W4313527863 cites W4200231264 @default.
- W4313527863 cites W4214681150 @default.
- W4313527863 cites W4224028831 @default.
- W4313527863 cites W4233216929 @default.
- W4313527863 cites W4281999648 @default.
- W4313527863 cites W4285198998 @default.
- W4313527863 cites W657765691 @default.
- W4313527863 doi "https://doi.org/10.1080/15481603.2022.2147298" @default.
- W4313527863 hasPublicationYear "2023" @default.
- W4313527863 type Work @default.
- W4313527863 citedByCount "0" @default.
- W4313527863 crossrefType "journal-article" @default.
- W4313527863 hasAuthorship W4313527863A5042565510 @default.
- W4313527863 hasAuthorship W4313527863A5082617670 @default.
- W4313527863 hasAuthorship W4313527863A5088173589 @default.
- W4313527863 hasAuthorship W4313527863A5088966923 @default.
- W4313527863 hasBestOaLocation W43135278631 @default.
- W4313527863 hasConcept C111919701 @default.
- W4313527863 hasConcept C119857082 @default.
- W4313527863 hasConcept C136389625 @default.
- W4313527863 hasConcept C154945302 @default.
- W4313527863 hasConcept C2524010 @default.
- W4313527863 hasConcept C2777210771 @default.
- W4313527863 hasConcept C33923547 @default.
- W4313527863 hasConcept C41008148 @default.
- W4313527863 hasConcept C50644808 @default.
- W4313527863 hasConcept C58973888 @default.
- W4313527863 hasConcept C79974875 @default.
- W4313527863 hasConceptScore W4313527863C111919701 @default.
- W4313527863 hasConceptScore W4313527863C119857082 @default.
- W4313527863 hasConceptScore W4313527863C136389625 @default.
- W4313527863 hasConceptScore W4313527863C154945302 @default.
- W4313527863 hasConceptScore W4313527863C2524010 @default.
- W4313527863 hasConceptScore W4313527863C2777210771 @default.
- W4313527863 hasConceptScore W4313527863C33923547 @default.
- W4313527863 hasConceptScore W4313527863C41008148 @default.
- W4313527863 hasConceptScore W4313527863C50644808 @default.
- W4313527863 hasConceptScore W4313527863C58973888 @default.
- W4313527863 hasConceptScore W4313527863C79974875 @default.
- W4313527863 hasIssue "1" @default.
- W4313527863 hasLocation W43135278631 @default.
- W4313527863 hasOpenAccess W4313527863 @default.
- W4313527863 hasPrimaryLocation W43135278631 @default.
- W4313527863 hasRelatedWork W122912556 @default.
- W4313527863 hasRelatedWork W1756896031 @default.
- W4313527863 hasRelatedWork W3025582806 @default.
- W4313527863 hasRelatedWork W3094076422 @default.
- W4313527863 hasRelatedWork W3162567751 @default.
- W4313527863 hasRelatedWork W4285260836 @default.
- W4313527863 hasRelatedWork W4306321456 @default.
- W4313527863 hasRelatedWork W4312414840 @default.
- W4313527863 hasRelatedWork W4319309271 @default.
- W4313527863 hasRelatedWork W4386025632 @default.
- W4313527863 hasVolume "60" @default.
- W4313527863 isParatext "false" @default.
- W4313527863 isRetracted "false" @default.
- W4313527863 workType "article" @default.