Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313530132> ?p ?o ?g. }
- W4313530132 endingPage "111604" @default.
- W4313530132 startingPage "111604" @default.
- W4313530132 abstract "Artificial intelligence (AI) in its various forms finds more and more its way into complex distributed systems. For instance, it is used locally, as part of a sensor system, on the edge for low-latency high-performance inference, or in the cloud, e.g. for data mining. Modern complex systems, such as connected vehicles, are often part of an Internet of Things (IoT). This poses additional architectural challenges. To manage complexity, architectures are described with architecture frameworks, which are composed of a number of architectural views connected through correspondence rules. Despite some attempts, the definition of a mathematical foundation for architecture frameworks that are suitable for the development of distributed AI systems still requires investigation and study. In this paper, we propose to extend the state of the art on architecture framework by providing a mathematical model for system architectures, which is scalable and supports co-evolution of different aspects for example of an AI system. Based on Design Science Research, this study starts by identifying the challenges with architectural frameworks in a use case of distributed AI systems. Then, we derive from the identified challenges four rules, and we formulate them by exploiting concepts from category theory. We show how compositional thinking can provide rules for the creation and management of architectural frameworks for complex systems, for example distributed systems with AI. The aim of the paper is not to provide viewpoints or architecture models specific to AI systems, but instead to provide guidelines based on a mathematical formulation on how a consistent framework can be built up with existing, or newly created, viewpoints. To put in practice and test the approach, the identified and formulated rules are applied to derive an architectural framework for the EU Horizon 2020 project “Very efficient deep learning in the IoT” (VEDLIoT) in the form of a case study." @default.
- W4313530132 created "2023-01-06" @default.
- W4313530132 creator A5013103539 @default.
- W4313530132 creator A5069018122 @default.
- W4313530132 creator A5080435602 @default.
- W4313530132 date "2023-04-01" @default.
- W4313530132 modified "2023-10-18" @default.
- W4313530132 title "A compositional approach to creating architecture frameworks with an application to distributed AI systems" @default.
- W4313530132 cites W1872744038 @default.
- W4313530132 cites W1890983348 @default.
- W4313530132 cites W1976145740 @default.
- W4313530132 cites W2004492923 @default.
- W4313530132 cites W2040515813 @default.
- W4313530132 cites W2042234704 @default.
- W4313530132 cites W2056134008 @default.
- W4313530132 cites W2134934846 @default.
- W4313530132 cites W2136922540 @default.
- W4313530132 cites W2144819523 @default.
- W4313530132 cites W2200491502 @default.
- W4313530132 cites W2545041271 @default.
- W4313530132 cites W2591441436 @default.
- W4313530132 cites W2600735119 @default.
- W4313530132 cites W2930079485 @default.
- W4313530132 cites W2970433196 @default.
- W4313530132 cites W3003566556 @default.
- W4313530132 cites W3036425307 @default.
- W4313530132 cites W3036972878 @default.
- W4313530132 cites W3120666308 @default.
- W4313530132 cites W3151685851 @default.
- W4313530132 cites W3215034481 @default.
- W4313530132 doi "https://doi.org/10.1016/j.jss.2022.111604" @default.
- W4313530132 hasPublicationYear "2023" @default.
- W4313530132 type Work @default.
- W4313530132 citedByCount "3" @default.
- W4313530132 countsByYear W43135301322023 @default.
- W4313530132 crossrefType "journal-article" @default.
- W4313530132 hasAuthorship W4313530132A5013103539 @default.
- W4313530132 hasAuthorship W4313530132A5069018122 @default.
- W4313530132 hasAuthorship W4313530132A5080435602 @default.
- W4313530132 hasBestOaLocation W43135301321 @default.
- W4313530132 hasConcept C111919701 @default.
- W4313530132 hasConcept C115903868 @default.
- W4313530132 hasConcept C120314980 @default.
- W4313530132 hasConcept C123657996 @default.
- W4313530132 hasConcept C142362112 @default.
- W4313530132 hasConcept C153349607 @default.
- W4313530132 hasConcept C154945302 @default.
- W4313530132 hasConcept C199360897 @default.
- W4313530132 hasConcept C2522767166 @default.
- W4313530132 hasConcept C2776035091 @default.
- W4313530132 hasConcept C2776214188 @default.
- W4313530132 hasConcept C2777904410 @default.
- W4313530132 hasConcept C31352089 @default.
- W4313530132 hasConcept C35869016 @default.
- W4313530132 hasConcept C41008148 @default.
- W4313530132 hasConcept C41065761 @default.
- W4313530132 hasConcept C48044578 @default.
- W4313530132 hasConcept C53619493 @default.
- W4313530132 hasConcept C77088390 @default.
- W4313530132 hasConcept C79974875 @default.
- W4313530132 hasConcept C87912763 @default.
- W4313530132 hasConceptScore W4313530132C111919701 @default.
- W4313530132 hasConceptScore W4313530132C115903868 @default.
- W4313530132 hasConceptScore W4313530132C120314980 @default.
- W4313530132 hasConceptScore W4313530132C123657996 @default.
- W4313530132 hasConceptScore W4313530132C142362112 @default.
- W4313530132 hasConceptScore W4313530132C153349607 @default.
- W4313530132 hasConceptScore W4313530132C154945302 @default.
- W4313530132 hasConceptScore W4313530132C199360897 @default.
- W4313530132 hasConceptScore W4313530132C2522767166 @default.
- W4313530132 hasConceptScore W4313530132C2776035091 @default.
- W4313530132 hasConceptScore W4313530132C2776214188 @default.
- W4313530132 hasConceptScore W4313530132C2777904410 @default.
- W4313530132 hasConceptScore W4313530132C31352089 @default.
- W4313530132 hasConceptScore W4313530132C35869016 @default.
- W4313530132 hasConceptScore W4313530132C41008148 @default.
- W4313530132 hasConceptScore W4313530132C41065761 @default.
- W4313530132 hasConceptScore W4313530132C48044578 @default.
- W4313530132 hasConceptScore W4313530132C53619493 @default.
- W4313530132 hasConceptScore W4313530132C77088390 @default.
- W4313530132 hasConceptScore W4313530132C79974875 @default.
- W4313530132 hasConceptScore W4313530132C87912763 @default.
- W4313530132 hasLocation W43135301321 @default.
- W4313530132 hasLocation W43135301322 @default.
- W4313530132 hasOpenAccess W4313530132 @default.
- W4313530132 hasPrimaryLocation W43135301321 @default.
- W4313530132 hasRelatedWork W1596010778 @default.
- W4313530132 hasRelatedWork W1911735095 @default.
- W4313530132 hasRelatedWork W2240063513 @default.
- W4313530132 hasRelatedWork W2364921833 @default.
- W4313530132 hasRelatedWork W2380023786 @default.
- W4313530132 hasRelatedWork W2385146268 @default.
- W4313530132 hasRelatedWork W2546731016 @default.
- W4313530132 hasRelatedWork W2736068468 @default.
- W4313530132 hasRelatedWork W3010663160 @default.
- W4313530132 hasRelatedWork W4310607303 @default.
- W4313530132 hasVolume "198" @default.
- W4313530132 isParatext "false" @default.