Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313530142> ?p ?o ?g. }
- W4313530142 endingPage "1001" @default.
- W4313530142 startingPage "989" @default.
- W4313530142 abstract "The high-content image-based assay is commonly leveraged for identifying the phenotypic impact of genetic perturbations in biology field. However, a persistent issue remains unsolved during experiments: the interferential technical noises caused by systematic errors (e.g., temperature, reagent concentration, and well location) are always mixed up with the real biological signals, leading to misinterpretation of any conclusion drawn. Here, we reported a mean teacher-based deep learning model (DeepNoise) that can disentangle biological signals from the experimental noises. Specifically, we aimed to classify the phenotypic impact of 1108 different genetic perturbations screened from 125,510 fluorescent microscopy images, which were totally unrecognizable by the human eye. We validated our model by participating in the Recursion Cellular Image Classification Challenge, and DeepNoise achieved an extremely high classification score (accuracy: 99.596%), ranking the 2nd place among 866 participating groups. This promising result indicates the successful separation of biological and technical factors, which might help decrease the cost of treatment development and expedite the drug discovery process. The source code of DeepNoise is available at https://github.com/Scu-sen/Recursion-Cellular-Image-Classification-Challenge." @default.
- W4313530142 created "2023-01-06" @default.
- W4313530142 creator A5006956415 @default.
- W4313530142 creator A5031467394 @default.
- W4313530142 creator A5036620967 @default.
- W4313530142 creator A5057464765 @default.
- W4313530142 creator A5061309609 @default.
- W4313530142 creator A5068865316 @default.
- W4313530142 creator A5071672663 @default.
- W4313530142 creator A5086903789 @default.
- W4313530142 date "2022-10-01" @default.
- W4313530142 modified "2023-09-30" @default.
- W4313530142 title "DeepNoise: Signal and Noise Disentanglement Based on Classifying Fluorescent Microscopy Images via Deep Learning" @default.
- W4313530142 cites W1597211359 @default.
- W4313530142 cites W1611419331 @default.
- W4313530142 cites W1968410036 @default.
- W4313530142 cites W1969624577 @default.
- W4313530142 cites W1982873976 @default.
- W4313530142 cites W2010400359 @default.
- W4313530142 cites W2029927832 @default.
- W4313530142 cites W2031441006 @default.
- W4313530142 cites W2052214665 @default.
- W4313530142 cites W2056022845 @default.
- W4313530142 cites W2057854194 @default.
- W4313530142 cites W2075196645 @default.
- W4313530142 cites W2084680372 @default.
- W4313530142 cites W2096192437 @default.
- W4313530142 cites W2108556791 @default.
- W4313530142 cites W2115003883 @default.
- W4313530142 cites W2183389629 @default.
- W4313530142 cites W2198606573 @default.
- W4313530142 cites W2225391592 @default.
- W4313530142 cites W2264017649 @default.
- W4313530142 cites W2302302587 @default.
- W4313530142 cites W2343039591 @default.
- W4313530142 cites W2469938794 @default.
- W4313530142 cites W2509141893 @default.
- W4313530142 cites W2594760301 @default.
- W4313530142 cites W2706395799 @default.
- W4313530142 cites W2760946358 @default.
- W4313530142 cites W2787769342 @default.
- W4313530142 cites W2950695830 @default.
- W4313530142 cites W2960665958 @default.
- W4313530142 cites W2962711591 @default.
- W4313530142 cites W3103152812 @default.
- W4313530142 cites W3166898278 @default.
- W4313530142 cites W4290764638 @default.
- W4313530142 doi "https://doi.org/10.1016/j.gpb.2022.12.007" @default.
- W4313530142 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36608842" @default.
- W4313530142 hasPublicationYear "2022" @default.
- W4313530142 type Work @default.
- W4313530142 citedByCount "1" @default.
- W4313530142 countsByYear W43135301422022 @default.
- W4313530142 crossrefType "journal-article" @default.
- W4313530142 hasAuthorship W4313530142A5006956415 @default.
- W4313530142 hasAuthorship W4313530142A5031467394 @default.
- W4313530142 hasAuthorship W4313530142A5036620967 @default.
- W4313530142 hasAuthorship W4313530142A5057464765 @default.
- W4313530142 hasAuthorship W4313530142A5061309609 @default.
- W4313530142 hasAuthorship W4313530142A5068865316 @default.
- W4313530142 hasAuthorship W4313530142A5071672663 @default.
- W4313530142 hasAuthorship W4313530142A5086903789 @default.
- W4313530142 hasBestOaLocation W43135301421 @default.
- W4313530142 hasConcept C108583219 @default.
- W4313530142 hasConcept C111919701 @default.
- W4313530142 hasConcept C11413529 @default.
- W4313530142 hasConcept C115961682 @default.
- W4313530142 hasConcept C119857082 @default.
- W4313530142 hasConcept C153180895 @default.
- W4313530142 hasConcept C154945302 @default.
- W4313530142 hasConcept C168773036 @default.
- W4313530142 hasConcept C177264268 @default.
- W4313530142 hasConcept C189430467 @default.
- W4313530142 hasConcept C199360897 @default.
- W4313530142 hasConcept C2776760102 @default.
- W4313530142 hasConcept C2779843651 @default.
- W4313530142 hasConcept C41008148 @default.
- W4313530142 hasConcept C98045186 @default.
- W4313530142 hasConcept C99498987 @default.
- W4313530142 hasConceptScore W4313530142C108583219 @default.
- W4313530142 hasConceptScore W4313530142C111919701 @default.
- W4313530142 hasConceptScore W4313530142C11413529 @default.
- W4313530142 hasConceptScore W4313530142C115961682 @default.
- W4313530142 hasConceptScore W4313530142C119857082 @default.
- W4313530142 hasConceptScore W4313530142C153180895 @default.
- W4313530142 hasConceptScore W4313530142C154945302 @default.
- W4313530142 hasConceptScore W4313530142C168773036 @default.
- W4313530142 hasConceptScore W4313530142C177264268 @default.
- W4313530142 hasConceptScore W4313530142C189430467 @default.
- W4313530142 hasConceptScore W4313530142C199360897 @default.
- W4313530142 hasConceptScore W4313530142C2776760102 @default.
- W4313530142 hasConceptScore W4313530142C2779843651 @default.
- W4313530142 hasConceptScore W4313530142C41008148 @default.
- W4313530142 hasConceptScore W4313530142C98045186 @default.
- W4313530142 hasConceptScore W4313530142C99498987 @default.
- W4313530142 hasIssue "5" @default.
- W4313530142 hasLocation W43135301421 @default.
- W4313530142 hasLocation W43135301422 @default.