Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313531070> ?p ?o ?g. }
- W4313531070 endingPage "107551" @default.
- W4313531070 startingPage "107551" @default.
- W4313531070 abstract "Volunteer cotton (VC) plants growing in the fields of inter-seasonal and rotated crops, like corn, can serve as hosts to boll weevil pests once they reach pin-head square stage (5–6 leaf stage). The VC plants therefore need to be detected, located, and destroyed or sprayed. In this paper, we present a study on using deep learning (DL) to detect VC plants in a corn field using RGB images collected with an unmanned aerial vehicle (UAV). The objectives were (i) to determine whether the YOLOv3 DL algorithm could be used for VC detection in a corn field based on UAV-derived RGB images, and (ii) to investigate the behavior of YOLOv3 on images at three different pixel scales (320 × 320, S1; 416 × 416, S2; and 512 × 512, S3). The metrics used to evaluate the results were average precision (AP), mean average precision (mAP) and F1-score at 95 % confidence level. It was found that YOLOv3 was able to detect VC plants in corn field at an average detection accuracy of more than 80 %, F1-score of 78.5 % and mAP of 80.38 %. With respect to images size, no significant differences existed for mAP among the three scales, but a significant difference was found for AP between S1 and S3 (p = 0.04) and between S2 and S3 (p = 0.02). A significant difference was also found for F1-score between S2 and S3 (p = 0.02). The overall goal of this study was to minimize boll weevil pest infestation by maximizing the true positive detection of VC plants in a corn field which is represented by the mAP values. The lack of significant differences of these at all three scales indicated that the trained YOLOv3 model can be used for VC detection irrespective of the three input image sizes. The capability of YOLOv3 to detect VC plants demonstrates the potential of DL algorithms for real-time detection and mitigation using computer vision and a spot-spray capable UAV." @default.
- W4313531070 created "2023-01-06" @default.
- W4313531070 creator A5005564600 @default.
- W4313531070 creator A5007035882 @default.
- W4313531070 creator A5012432755 @default.
- W4313531070 creator A5015263215 @default.
- W4313531070 creator A5022600991 @default.
- W4313531070 creator A5026990034 @default.
- W4313531070 creator A5051149614 @default.
- W4313531070 creator A5051202991 @default.
- W4313531070 creator A5052274195 @default.
- W4313531070 creator A5053161994 @default.
- W4313531070 creator A5076701840 @default.
- W4313531070 creator A5087296672 @default.
- W4313531070 date "2023-01-01" @default.
- W4313531070 modified "2023-09-30" @default.
- W4313531070 title "Detecting volunteer cotton plants in a corn field with deep learning on UAV remote-sensing imagery" @default.
- W4313531070 cites W1906171435 @default.
- W4313531070 cites W1976526581 @default.
- W4313531070 cites W2061554433 @default.
- W4313531070 cites W2117539524 @default.
- W4313531070 cites W2120719106 @default.
- W4313531070 cites W2168745915 @default.
- W4313531070 cites W2291509960 @default.
- W4313531070 cites W2318802957 @default.
- W4313531070 cites W2326597717 @default.
- W4313531070 cites W2479938810 @default.
- W4313531070 cites W2768489488 @default.
- W4313531070 cites W2901528449 @default.
- W4313531070 cites W2908783980 @default.
- W4313531070 cites W2945533538 @default.
- W4313531070 cites W2962595552 @default.
- W4313531070 cites W2981958729 @default.
- W4313531070 cites W2985083673 @default.
- W4313531070 cites W3000086329 @default.
- W4313531070 cites W3022847477 @default.
- W4313531070 cites W3031917044 @default.
- W4313531070 cites W3090532574 @default.
- W4313531070 cites W3099087703 @default.
- W4313531070 cites W3109829037 @default.
- W4313531070 cites W3168123399 @default.
- W4313531070 cites W3216361804 @default.
- W4313531070 cites W4200261781 @default.
- W4313531070 cites W4200579766 @default.
- W4313531070 cites W4281259653 @default.
- W4313531070 doi "https://doi.org/10.1016/j.compag.2022.107551" @default.
- W4313531070 hasPublicationYear "2023" @default.
- W4313531070 type Work @default.
- W4313531070 citedByCount "4" @default.
- W4313531070 countsByYear W43135310702023 @default.
- W4313531070 crossrefType "journal-article" @default.
- W4313531070 hasAuthorship W4313531070A5005564600 @default.
- W4313531070 hasAuthorship W4313531070A5007035882 @default.
- W4313531070 hasAuthorship W4313531070A5012432755 @default.
- W4313531070 hasAuthorship W4313531070A5015263215 @default.
- W4313531070 hasAuthorship W4313531070A5022600991 @default.
- W4313531070 hasAuthorship W4313531070A5026990034 @default.
- W4313531070 hasAuthorship W4313531070A5051149614 @default.
- W4313531070 hasAuthorship W4313531070A5051202991 @default.
- W4313531070 hasAuthorship W4313531070A5052274195 @default.
- W4313531070 hasAuthorship W4313531070A5053161994 @default.
- W4313531070 hasAuthorship W4313531070A5076701840 @default.
- W4313531070 hasAuthorship W4313531070A5087296672 @default.
- W4313531070 hasBestOaLocation W43135310701 @default.
- W4313531070 hasConcept C105795698 @default.
- W4313531070 hasConcept C154945302 @default.
- W4313531070 hasConcept C160633673 @default.
- W4313531070 hasConcept C205649164 @default.
- W4313531070 hasConcept C2776451879 @default.
- W4313531070 hasConcept C2776768635 @default.
- W4313531070 hasConcept C2780119695 @default.
- W4313531070 hasConcept C2993531722 @default.
- W4313531070 hasConcept C3018023364 @default.
- W4313531070 hasConcept C33923547 @default.
- W4313531070 hasConcept C41008148 @default.
- W4313531070 hasConcept C62649853 @default.
- W4313531070 hasConcept C6557445 @default.
- W4313531070 hasConcept C82990744 @default.
- W4313531070 hasConcept C86803240 @default.
- W4313531070 hasConceptScore W4313531070C105795698 @default.
- W4313531070 hasConceptScore W4313531070C154945302 @default.
- W4313531070 hasConceptScore W4313531070C160633673 @default.
- W4313531070 hasConceptScore W4313531070C205649164 @default.
- W4313531070 hasConceptScore W4313531070C2776451879 @default.
- W4313531070 hasConceptScore W4313531070C2776768635 @default.
- W4313531070 hasConceptScore W4313531070C2780119695 @default.
- W4313531070 hasConceptScore W4313531070C2993531722 @default.
- W4313531070 hasConceptScore W4313531070C3018023364 @default.
- W4313531070 hasConceptScore W4313531070C33923547 @default.
- W4313531070 hasConceptScore W4313531070C41008148 @default.
- W4313531070 hasConceptScore W4313531070C62649853 @default.
- W4313531070 hasConceptScore W4313531070C6557445 @default.
- W4313531070 hasConceptScore W4313531070C82990744 @default.
- W4313531070 hasConceptScore W4313531070C86803240 @default.
- W4313531070 hasLocation W43135310701 @default.
- W4313531070 hasLocation W43135310702 @default.
- W4313531070 hasOpenAccess W4313531070 @default.
- W4313531070 hasPrimaryLocation W43135310701 @default.