Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313531119> ?p ?o ?g. }
- W4313531119 endingPage "202" @default.
- W4313531119 startingPage "192" @default.
- W4313531119 abstract "Seismic data interpolation, especially irregularly sampled data interpolation, is a critical task for seismic processing and subsequent interpretation. Recently, with the development of machine learning and deep learning, convolutional neural networks (CNNs) are applied for interpolating irregularly sampled seismic data. CNN based approaches can address the apparent defects of traditional interpolation methods, such as the low computational efficiency and the difficulty on parameters selection. However, current CNN based methods only consider the temporal and spatial features of irregularly sampled seismic data, which fail to consider the frequency features of seismic data, i.e., the multi-scale features. To overcome these drawbacks, we propose a wavelet-based convolutional block attention deep learning (W-CBADL) network for irregularly sampled seismic data reconstruction. We firstly introduce the discrete wavelet transform (DWT) and the inverse wavelet transform (IWT) to the commonly used U-Net by considering the multi-scale features of irregularly sampled seismic data. Moreover, we propose to adopt the convolutional block attention module (CBAM) to precisely restore sampled seismic traces, which could apply the attention to both channel and spatial dimensions. Finally, we adopt the proposed W-CBADL model to synthetic and pre-stack field data to evaluate its validity and effectiveness. The results demonstrate that the proposed W-CBADL model could reconstruct irregularly sampled seismic data more effectively and more efficiently than the state-of-the-art contrastive CNN based models." @default.
- W4313531119 created "2023-01-06" @default.
- W4313531119 creator A5000850153 @default.
- W4313531119 creator A5030336619 @default.
- W4313531119 creator A5036034032 @default.
- W4313531119 creator A5040647242 @default.
- W4313531119 creator A5045431132 @default.
- W4313531119 creator A5046597133 @default.
- W4313531119 creator A5069796893 @default.
- W4313531119 date "2022-12-01" @default.
- W4313531119 modified "2023-09-30" @default.
- W4313531119 title "Irregularly sampled seismic data interpolation via wavelet-based convolutional block attention deep learning" @default.
- W4313531119 cites W1498924937 @default.
- W4313531119 cites W1779600564 @default.
- W4313531119 cites W1920129160 @default.
- W4313531119 cites W1990498189 @default.
- W4313531119 cites W1995726128 @default.
- W4313531119 cites W2033676516 @default.
- W4313531119 cites W2039205893 @default.
- W4313531119 cites W2056160384 @default.
- W4313531119 cites W2098914003 @default.
- W4313531119 cites W2102148524 @default.
- W4313531119 cites W2114770744 @default.
- W4313531119 cites W2124769970 @default.
- W4313531119 cites W2133629708 @default.
- W4313531119 cites W2133665775 @default.
- W4313531119 cites W2137832649 @default.
- W4313531119 cites W2139536096 @default.
- W4313531119 cites W2144079431 @default.
- W4313531119 cites W2146305038 @default.
- W4313531119 cites W2167651580 @default.
- W4313531119 cites W2170860899 @default.
- W4313531119 cites W2296609147 @default.
- W4313531119 cites W2345190138 @default.
- W4313531119 cites W2605232094 @default.
- W4313531119 cites W2776535170 @default.
- W4313531119 cites W2884585870 @default.
- W4313531119 cites W2894410771 @default.
- W4313531119 cites W2947474760 @default.
- W4313531119 cites W2963494934 @default.
- W4313531119 cites W2963787510 @default.
- W4313531119 cites W2969395562 @default.
- W4313531119 cites W2970155362 @default.
- W4313531119 cites W2977897970 @default.
- W4313531119 cites W2991580101 @default.
- W4313531119 cites W2999581854 @default.
- W4313531119 cites W3003534375 @default.
- W4313531119 cites W3012353860 @default.
- W4313531119 cites W3032305282 @default.
- W4313531119 cites W3034362861 @default.
- W4313531119 cites W3036970862 @default.
- W4313531119 cites W3081502560 @default.
- W4313531119 cites W3104899156 @default.
- W4313531119 cites W3133765315 @default.
- W4313531119 cites W3187004614 @default.
- W4313531119 cites W3188543266 @default.
- W4313531119 cites W4224903975 @default.
- W4313531119 cites W4225918225 @default.
- W4313531119 cites W4235096090 @default.
- W4313531119 cites W4312617484 @default.
- W4313531119 doi "https://doi.org/10.1016/j.aiig.2022.12.001" @default.
- W4313531119 hasPublicationYear "2022" @default.
- W4313531119 type Work @default.
- W4313531119 citedByCount "0" @default.
- W4313531119 crossrefType "journal-article" @default.
- W4313531119 hasAuthorship W4313531119A5000850153 @default.
- W4313531119 hasAuthorship W4313531119A5030336619 @default.
- W4313531119 hasAuthorship W4313531119A5036034032 @default.
- W4313531119 hasAuthorship W4313531119A5040647242 @default.
- W4313531119 hasAuthorship W4313531119A5045431132 @default.
- W4313531119 hasAuthorship W4313531119A5046597133 @default.
- W4313531119 hasAuthorship W4313531119A5069796893 @default.
- W4313531119 hasBestOaLocation W43135311191 @default.
- W4313531119 hasConcept C104114177 @default.
- W4313531119 hasConcept C108583219 @default.
- W4313531119 hasConcept C11413529 @default.
- W4313531119 hasConcept C137800194 @default.
- W4313531119 hasConcept C153180895 @default.
- W4313531119 hasConcept C154945302 @default.
- W4313531119 hasConcept C196216189 @default.
- W4313531119 hasConcept C2524010 @default.
- W4313531119 hasConcept C2777210771 @default.
- W4313531119 hasConcept C33923547 @default.
- W4313531119 hasConcept C41008148 @default.
- W4313531119 hasConcept C47432892 @default.
- W4313531119 hasConcept C81363708 @default.
- W4313531119 hasConceptScore W4313531119C104114177 @default.
- W4313531119 hasConceptScore W4313531119C108583219 @default.
- W4313531119 hasConceptScore W4313531119C11413529 @default.
- W4313531119 hasConceptScore W4313531119C137800194 @default.
- W4313531119 hasConceptScore W4313531119C153180895 @default.
- W4313531119 hasConceptScore W4313531119C154945302 @default.
- W4313531119 hasConceptScore W4313531119C196216189 @default.
- W4313531119 hasConceptScore W4313531119C2524010 @default.
- W4313531119 hasConceptScore W4313531119C2777210771 @default.
- W4313531119 hasConceptScore W4313531119C33923547 @default.
- W4313531119 hasConceptScore W4313531119C41008148 @default.
- W4313531119 hasConceptScore W4313531119C47432892 @default.