Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313531231> ?p ?o ?g. }
- W4313531231 endingPage "200171" @default.
- W4313531231 startingPage "200171" @default.
- W4313531231 abstract "Emotion recognition is the process to detect, evaluate, interpret, and respond to people's emotional states and emotions, ranging from happiness to fear to humiliation. The COVID- 19 epidemic has provided new and essential impetus for emotion recognition research. The numerous feelings and thoughts shared and posted on social networking sites throughout the COVID-19 outbreak mirrored the general public's mental health. To better comprehend the existing ecology of applied emotion recognition, this work presents an overview of different emotion acquisition tools that are readily available and provide high recognition accuracy. It also compares the most widely used emotion recognition datasets. Finally, it discusses various machine and deep learning classifiers that can be employed to acquire high level features for classification. Different data fusion methods are also explained in detail highlighting their benefits and limitations." @default.
- W4313531231 created "2023-01-06" @default.
- W4313531231 creator A5027086970 @default.
- W4313531231 creator A5069814126 @default.
- W4313531231 creator A5074467447 @default.
- W4313531231 date "2023-02-01" @default.
- W4313531231 modified "2023-10-18" @default.
- W4313531231 title "A systematic survey on multimodal emotion recognition using learning algorithms" @default.
- W4313531231 cites W1947251450 @default.
- W4313531231 cites W2002055708 @default.
- W4313531231 cites W2025427990 @default.
- W4313531231 cites W2068165399 @default.
- W4313531231 cites W2104616322 @default.
- W4313531231 cites W2120945046 @default.
- W4313531231 cites W2122098299 @default.
- W4313531231 cites W2314395941 @default.
- W4313531231 cites W2319931908 @default.
- W4313531231 cites W2587235420 @default.
- W4313531231 cites W2619383789 @default.
- W4313531231 cites W2762323924 @default.
- W4313531231 cites W2810625036 @default.
- W4313531231 cites W2890679134 @default.
- W4313531231 cites W2917094047 @default.
- W4313531231 cites W2941914178 @default.
- W4313531231 cites W2959012313 @default.
- W4313531231 cites W2970405962 @default.
- W4313531231 cites W2987770774 @default.
- W4313531231 cites W2997258743 @default.
- W4313531231 cites W2997399314 @default.
- W4313531231 cites W3012159372 @default.
- W4313531231 cites W3020487153 @default.
- W4313531231 cites W3030848516 @default.
- W4313531231 cites W3041750665 @default.
- W4313531231 cites W3084230554 @default.
- W4313531231 cites W3101924153 @default.
- W4313531231 cites W3102266808 @default.
- W4313531231 cites W3103291722 @default.
- W4313531231 cites W3114195756 @default.
- W4313531231 cites W3119048198 @default.
- W4313531231 cites W3132080317 @default.
- W4313531231 cites W3134184865 @default.
- W4313531231 cites W3156356077 @default.
- W4313531231 cites W3156576211 @default.
- W4313531231 cites W3159301005 @default.
- W4313531231 cites W3160428113 @default.
- W4313531231 cites W3165923132 @default.
- W4313531231 cites W3175450530 @default.
- W4313531231 cites W3194117586 @default.
- W4313531231 cites W3196161039 @default.
- W4313531231 cites W3196564752 @default.
- W4313531231 cites W3200612871 @default.
- W4313531231 doi "https://doi.org/10.1016/j.iswa.2022.200171" @default.
- W4313531231 hasPublicationYear "2023" @default.
- W4313531231 type Work @default.
- W4313531231 citedByCount "7" @default.
- W4313531231 countsByYear W43135312312023 @default.
- W4313531231 crossrefType "journal-article" @default.
- W4313531231 hasAuthorship W4313531231A5027086970 @default.
- W4313531231 hasAuthorship W4313531231A5069814126 @default.
- W4313531231 hasAuthorship W4313531231A5074467447 @default.
- W4313531231 hasBestOaLocation W43135312311 @default.
- W4313531231 hasConcept C119857082 @default.
- W4313531231 hasConcept C122980154 @default.
- W4313531231 hasConcept C134362201 @default.
- W4313531231 hasConcept C154945302 @default.
- W4313531231 hasConcept C15744967 @default.
- W4313531231 hasConcept C206310091 @default.
- W4313531231 hasConcept C2777438025 @default.
- W4313531231 hasConcept C2778999518 @default.
- W4313531231 hasConcept C2780666240 @default.
- W4313531231 hasConcept C41008148 @default.
- W4313531231 hasConcept C542102704 @default.
- W4313531231 hasConcept C77805123 @default.
- W4313531231 hasConceptScore W4313531231C119857082 @default.
- W4313531231 hasConceptScore W4313531231C122980154 @default.
- W4313531231 hasConceptScore W4313531231C134362201 @default.
- W4313531231 hasConceptScore W4313531231C154945302 @default.
- W4313531231 hasConceptScore W4313531231C15744967 @default.
- W4313531231 hasConceptScore W4313531231C206310091 @default.
- W4313531231 hasConceptScore W4313531231C2777438025 @default.
- W4313531231 hasConceptScore W4313531231C2778999518 @default.
- W4313531231 hasConceptScore W4313531231C2780666240 @default.
- W4313531231 hasConceptScore W4313531231C41008148 @default.
- W4313531231 hasConceptScore W4313531231C542102704 @default.
- W4313531231 hasConceptScore W4313531231C77805123 @default.
- W4313531231 hasFunder F4320316805 @default.
- W4313531231 hasLocation W43135312311 @default.
- W4313531231 hasOpenAccess W4313531231 @default.
- W4313531231 hasPrimaryLocation W43135312311 @default.
- W4313531231 hasRelatedWork W2166171456 @default.
- W4313531231 hasRelatedWork W2748952813 @default.
- W4313531231 hasRelatedWork W2899084033 @default.
- W4313531231 hasRelatedWork W2956014937 @default.
- W4313531231 hasRelatedWork W3147486355 @default.
- W4313531231 hasRelatedWork W3160729440 @default.
- W4313531231 hasRelatedWork W3194906321 @default.
- W4313531231 hasRelatedWork W3200155668 @default.
- W4313531231 hasRelatedWork W3216492212 @default.