Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313531269> ?p ?o ?g. }
- W4313531269 endingPage "128539" @default.
- W4313531269 startingPage "128539" @default.
- W4313531269 abstract "Studies on developing strategies to predict the stability and performance of the composting process have increased in recent years. Machine learning (ML) has focused on process optimization, prediction of missing data, detection of non-conformities, and managing complex variables. This review investigates the perspectives and challenges of ML and its important algorithms such as Artificial Neural Networks (ANNs), Random Forest (RF), Adaptive-network-based fuzzy inference systems (ANFIS), Support Vector Machines (SVMs), and Deep Neural Networks (DNNs) used in the composting process. In addition, the individual shortcomings and inadequacies of the metrics, which were used as error or performance criteria in the studies, were emphasized. Except for a few studies, it was concluded that Artificial Intelligence (AI) algorithms such as Genetic algorithm (GA), Differential Evaluation Algorithm (DEA), and Particle Swarm Optimization (PSO) were not used in the optimization of the model parameters, but in the optimization of the parameters of the ML algorithms." @default.
- W4313531269 created "2023-01-06" @default.
- W4313531269 creator A5019992269 @default.
- W4313531269 creator A5049371199 @default.
- W4313531269 creator A5085363117 @default.
- W4313531269 date "2023-02-01" @default.
- W4313531269 modified "2023-10-03" @default.
- W4313531269 title "Artificial intelligence and machine learning approaches in composting process: A review" @default.
- W4313531269 cites W16850546 @default.
- W4313531269 cites W1996159834 @default.
- W4313531269 cites W2007227121 @default.
- W4313531269 cites W2019207321 @default.
- W4313531269 cites W2026508550 @default.
- W4313531269 cites W2061206197 @default.
- W4313531269 cites W2064296571 @default.
- W4313531269 cites W2065240730 @default.
- W4313531269 cites W2067449546 @default.
- W4313531269 cites W2081547962 @default.
- W4313531269 cites W2121394390 @default.
- W4313531269 cites W2125209718 @default.
- W4313531269 cites W2128074396 @default.
- W4313531269 cites W2131431078 @default.
- W4313531269 cites W2133649387 @default.
- W4313531269 cites W2147829453 @default.
- W4313531269 cites W2210521083 @default.
- W4313531269 cites W2299546171 @default.
- W4313531269 cites W2521642003 @default.
- W4313531269 cites W2538238726 @default.
- W4313531269 cites W2643768905 @default.
- W4313531269 cites W2678780875 @default.
- W4313531269 cites W2732182150 @default.
- W4313531269 cites W2735926146 @default.
- W4313531269 cites W2738651272 @default.
- W4313531269 cites W2738759876 @default.
- W4313531269 cites W2759346003 @default.
- W4313531269 cites W2769079032 @default.
- W4313531269 cites W2774603473 @default.
- W4313531269 cites W2791647380 @default.
- W4313531269 cites W2890845143 @default.
- W4313531269 cites W2891780955 @default.
- W4313531269 cites W2901190746 @default.
- W4313531269 cites W2936900385 @default.
- W4313531269 cites W2953672996 @default.
- W4313531269 cites W3005598075 @default.
- W4313531269 cites W3010136656 @default.
- W4313531269 cites W3103158440 @default.
- W4313531269 cites W3110787658 @default.
- W4313531269 cites W3123174680 @default.
- W4313531269 cites W3126316168 @default.
- W4313531269 cites W3137858047 @default.
- W4313531269 cites W3158861203 @default.
- W4313531269 cites W3165929952 @default.
- W4313531269 cites W3182180651 @default.
- W4313531269 cites W3198703526 @default.
- W4313531269 cites W3200955720 @default.
- W4313531269 cites W3214140705 @default.
- W4313531269 cites W3216741772 @default.
- W4313531269 cites W4200509741 @default.
- W4313531269 cites W4205113304 @default.
- W4313531269 cites W4205150601 @default.
- W4313531269 cites W4206479083 @default.
- W4313531269 cites W4207016210 @default.
- W4313531269 cites W4214696910 @default.
- W4313531269 cites W4220653563 @default.
- W4313531269 cites W4220794015 @default.
- W4313531269 cites W4225114758 @default.
- W4313531269 cites W4239510810 @default.
- W4313531269 cites W4282962615 @default.
- W4313531269 cites W4283013832 @default.
- W4313531269 cites W4284966086 @default.
- W4313531269 cites W4284994313 @default.
- W4313531269 cites W4285005246 @default.
- W4313531269 cites W4289526222 @default.
- W4313531269 cites W4295011645 @default.
- W4313531269 cites W4295278512 @default.
- W4313531269 cites W4296433226 @default.
- W4313531269 cites W4300818521 @default.
- W4313531269 cites W4306311577 @default.
- W4313531269 cites W904243540 @default.
- W4313531269 doi "https://doi.org/10.1016/j.biortech.2022.128539" @default.
- W4313531269 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36608858" @default.
- W4313531269 hasPublicationYear "2023" @default.
- W4313531269 type Work @default.
- W4313531269 citedByCount "7" @default.
- W4313531269 countsByYear W43135312692023 @default.
- W4313531269 crossrefType "journal-article" @default.
- W4313531269 hasAuthorship W4313531269A5019992269 @default.
- W4313531269 hasAuthorship W4313531269A5049371199 @default.
- W4313531269 hasAuthorship W4313531269A5085363117 @default.
- W4313531269 hasConcept C111919701 @default.
- W4313531269 hasConcept C119857082 @default.
- W4313531269 hasConcept C12267149 @default.
- W4313531269 hasConcept C124101348 @default.
- W4313531269 hasConcept C154945302 @default.
- W4313531269 hasConcept C169258074 @default.
- W4313531269 hasConcept C186108316 @default.
- W4313531269 hasConcept C195975749 @default.
- W4313531269 hasConcept C2776214188 @default.