Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313531294> ?p ?o ?g. }
- W4313531294 endingPage "103168" @default.
- W4313531294 startingPage "103168" @default.
- W4313531294 abstract "Quantifying biophysical and biochemical vegetation variables is of great importance in precision agriculture. Here, the ability of artificial neural networks (ANNs) to generate multiple outputs is exploited to simultaneously retrieve Leaf area index (LAI), leaf sheath moisture (LSM), leaf chlorophyll content (LCC), and leaf nitrogen concentration (LNC) of sugarcane from Sentinel-2 spectra. We apply a type of ANNs, Bayesian Regularized ANN (BRANN), which incorporates the Bayes' theorem into a regularization scheme to tackle the overfitting problem of ANN and improve its generalizability. Quantitatively assessing the result accuracy indicated RMSE values of 0.48 (m2/m2) for LAI, 2.36 (% wb) for LSM, 5.85 (μg/cm2) for LCC, and 0.23 (%) for LNC, applying simultaneous retrieval. It was demonstrated that simultaneous retrievals of the variables outperformed the individual retrievals. The superiority of the proposed BRANN over a conventional ANN trained with the Levenberg-Marquardt algorithm was confirmed through statistical comparison of their results. The model was applied over the entire Sentinel-2 images to map the considered variables. The maps were probed to qualitatively evaluate the model performance. The results indicated that the retrievals reasonably represent spatial and temporal variations of the variables. Generally, this study demonstrated that the BRANN simultaneous retrieval model can provide faster and more accurate retrievals than those obtained from conventional ANNs and individual retrievals." @default.
- W4313531294 created "2023-01-06" @default.
- W4313531294 creator A5000189900 @default.
- W4313531294 creator A5056219693 @default.
- W4313531294 creator A5079448372 @default.
- W4313531294 creator A5081309221 @default.
- W4313531294 creator A5089018176 @default.
- W4313531294 date "2023-02-01" @default.
- W4313531294 modified "2023-09-30" @default.
- W4313531294 title "Simultaneous retrieval of sugarcane variables from Sentinel-2 data using Bayesian regularized neural network" @default.
- W4313531294 cites W1182225162 @default.
- W4313531294 cites W1815264562 @default.
- W4313531294 cites W196321102 @default.
- W4313531294 cites W1966035399 @default.
- W4313531294 cites W1982837869 @default.
- W4313531294 cites W1993490180 @default.
- W4313531294 cites W2013369959 @default.
- W4313531294 cites W2014094762 @default.
- W4313531294 cites W2017393444 @default.
- W4313531294 cites W2024925469 @default.
- W4313531294 cites W2025757188 @default.
- W4313531294 cites W2030078894 @default.
- W4313531294 cites W2034978228 @default.
- W4313531294 cites W2035196702 @default.
- W4313531294 cites W2052173685 @default.
- W4313531294 cites W2055265278 @default.
- W4313531294 cites W2062161081 @default.
- W4313531294 cites W2078840559 @default.
- W4313531294 cites W2079630883 @default.
- W4313531294 cites W2086538100 @default.
- W4313531294 cites W2131126673 @default.
- W4313531294 cites W2152164823 @default.
- W4313531294 cites W2157144502 @default.
- W4313531294 cites W2159993560 @default.
- W4313531294 cites W2162421262 @default.
- W4313531294 cites W2166312616 @default.
- W4313531294 cites W2170097984 @default.
- W4313531294 cites W2188115011 @default.
- W4313531294 cites W2188767531 @default.
- W4313531294 cites W221493477 @default.
- W4313531294 cites W2418464274 @default.
- W4313531294 cites W2761012186 @default.
- W4313531294 cites W2788859094 @default.
- W4313531294 cites W2801012657 @default.
- W4313531294 cites W2802113727 @default.
- W4313531294 cites W2806394060 @default.
- W4313531294 cites W2883145476 @default.
- W4313531294 cites W2911546748 @default.
- W4313531294 cites W2918294784 @default.
- W4313531294 cites W2943316090 @default.
- W4313531294 cites W2951781175 @default.
- W4313531294 cites W2983376237 @default.
- W4313531294 cites W3010955769 @default.
- W4313531294 cites W3033075976 @default.
- W4313531294 cites W3095491581 @default.
- W4313531294 cites W3141715805 @default.
- W4313531294 cites W3205220056 @default.
- W4313531294 cites W37018364 @default.
- W4313531294 cites W4210345722 @default.
- W4313531294 cites W4210630919 @default.
- W4313531294 cites W61452412 @default.
- W4313531294 cites W633320881 @default.
- W4313531294 doi "https://doi.org/10.1016/j.jag.2022.103168" @default.
- W4313531294 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36644684" @default.
- W4313531294 hasPublicationYear "2023" @default.
- W4313531294 type Work @default.
- W4313531294 citedByCount "0" @default.
- W4313531294 crossrefType "journal-article" @default.
- W4313531294 hasAuthorship W4313531294A5000189900 @default.
- W4313531294 hasAuthorship W4313531294A5056219693 @default.
- W4313531294 hasAuthorship W4313531294A5079448372 @default.
- W4313531294 hasAuthorship W4313531294A5081309221 @default.
- W4313531294 hasAuthorship W4313531294A5089018176 @default.
- W4313531294 hasBestOaLocation W43135312941 @default.
- W4313531294 hasConcept C107673813 @default.
- W4313531294 hasConcept C153180895 @default.
- W4313531294 hasConcept C154945302 @default.
- W4313531294 hasConcept C159078339 @default.
- W4313531294 hasConcept C205649164 @default.
- W4313531294 hasConcept C22019652 @default.
- W4313531294 hasConcept C25989453 @default.
- W4313531294 hasConcept C33923547 @default.
- W4313531294 hasConcept C41008148 @default.
- W4313531294 hasConcept C50644808 @default.
- W4313531294 hasConcept C62649853 @default.
- W4313531294 hasConcept C6557445 @default.
- W4313531294 hasConcept C86803240 @default.
- W4313531294 hasConceptScore W4313531294C107673813 @default.
- W4313531294 hasConceptScore W4313531294C153180895 @default.
- W4313531294 hasConceptScore W4313531294C154945302 @default.
- W4313531294 hasConceptScore W4313531294C159078339 @default.
- W4313531294 hasConceptScore W4313531294C205649164 @default.
- W4313531294 hasConceptScore W4313531294C22019652 @default.
- W4313531294 hasConceptScore W4313531294C25989453 @default.
- W4313531294 hasConceptScore W4313531294C33923547 @default.
- W4313531294 hasConceptScore W4313531294C41008148 @default.
- W4313531294 hasConceptScore W4313531294C50644808 @default.
- W4313531294 hasConceptScore W4313531294C62649853 @default.