Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313531424> ?p ?o ?g. }
- W4313531424 endingPage "200173" @default.
- W4313531424 startingPage "200173" @default.
- W4313531424 abstract "Fast and precise medical diagnosis of human cancer is crucial for treatment decisions. Gene selection consists of identifying a set of informative genes from microarray data to allow high predictive accuracy in human cancer classification. This task is a combinatorial search problem, and optimisation methods can be applied for its resolution. In this paper, two memetic micro-genetic algorithms (MμV1 and MμV2) with different hybridisation approaches are proposed for feature selection of cancer microarray data. Seven gene expression datasets are used for experimentation. The comparison with stochastic state-of-the-art optimisation techniques concludes that problem-dependent local search methods combined with micro-genetic algorithms improve feature selection of cancer microarray data." @default.
- W4313531424 created "2023-01-06" @default.
- W4313531424 creator A5063101145 @default.
- W4313531424 creator A5064933669 @default.
- W4313531424 creator A5065962628 @default.
- W4313531424 creator A5085782739 @default.
- W4313531424 date "2023-02-01" @default.
- W4313531424 modified "2023-10-14" @default.
- W4313531424 title "Memetic micro-genetic algorithms for cancer data classification" @default.
- W4313531424 cites W1523989055 @default.
- W4313531424 cites W1727290854 @default.
- W4313531424 cites W1851861644 @default.
- W4313531424 cites W1964940342 @default.
- W4313531424 cites W1965741506 @default.
- W4313531424 cites W1975791498 @default.
- W4313531424 cites W1976516122 @default.
- W4313531424 cites W1984144394 @default.
- W4313531424 cites W2008447722 @default.
- W4313531424 cites W2014736087 @default.
- W4313531424 cites W2031366169 @default.
- W4313531424 cites W2044170702 @default.
- W4313531424 cites W2064051473 @default.
- W4313531424 cites W2073127975 @default.
- W4313531424 cites W2080562691 @default.
- W4313531424 cites W2084096363 @default.
- W4313531424 cites W2087684630 @default.
- W4313531424 cites W2097413644 @default.
- W4313531424 cites W2101117710 @default.
- W4313531424 cites W2109363337 @default.
- W4313531424 cites W2122111042 @default.
- W4313531424 cites W2128985829 @default.
- W4313531424 cites W2134389439 @default.
- W4313531424 cites W2137721361 @default.
- W4313531424 cites W2142827986 @default.
- W4313531424 cites W2147716318 @default.
- W4313531424 cites W2149991085 @default.
- W4313531424 cites W2159400887 @default.
- W4313531424 cites W2159427933 @default.
- W4313531424 cites W2273271332 @default.
- W4313531424 cites W2318295100 @default.
- W4313531424 cites W2343247866 @default.
- W4313531424 cites W2343420905 @default.
- W4313531424 cites W2408246687 @default.
- W4313531424 cites W2524626112 @default.
- W4313531424 cites W2610903531 @default.
- W4313531424 cites W2799548584 @default.
- W4313531424 cites W2799791930 @default.
- W4313531424 cites W2805202830 @default.
- W4313531424 cites W2883387735 @default.
- W4313531424 cites W2884605725 @default.
- W4313531424 cites W2888602283 @default.
- W4313531424 cites W2895560478 @default.
- W4313531424 cites W2899750879 @default.
- W4313531424 cites W2902702739 @default.
- W4313531424 cites W2915032721 @default.
- W4313531424 cites W2919821184 @default.
- W4313531424 cites W2924094252 @default.
- W4313531424 cites W2925507233 @default.
- W4313531424 cites W2936118929 @default.
- W4313531424 cites W2942272953 @default.
- W4313531424 cites W2946402913 @default.
- W4313531424 cites W2953622398 @default.
- W4313531424 cites W2955396085 @default.
- W4313531424 cites W2972964658 @default.
- W4313531424 cites W2981755968 @default.
- W4313531424 cites W2992674204 @default.
- W4313531424 cites W2995602901 @default.
- W4313531424 cites W3016641440 @default.
- W4313531424 cites W3089798479 @default.
- W4313531424 cites W3091944703 @default.
- W4313531424 cites W3106821423 @default.
- W4313531424 cites W3127432888 @default.
- W4313531424 cites W3132451580 @default.
- W4313531424 cites W3135028703 @default.
- W4313531424 cites W3196757689 @default.
- W4313531424 cites W4200104194 @default.
- W4313531424 cites W4236137412 @default.
- W4313531424 cites W4249247926 @default.
- W4313531424 cites W4250503569 @default.
- W4313531424 cites W4282966553 @default.
- W4313531424 cites W4286252301 @default.
- W4313531424 doi "https://doi.org/10.1016/j.iswa.2022.200173" @default.
- W4313531424 hasPublicationYear "2023" @default.
- W4313531424 type Work @default.
- W4313531424 citedByCount "2" @default.
- W4313531424 countsByYear W43135314242023 @default.
- W4313531424 crossrefType "journal-article" @default.
- W4313531424 hasAuthorship W4313531424A5063101145 @default.
- W4313531424 hasAuthorship W4313531424A5064933669 @default.
- W4313531424 hasAuthorship W4313531424A5065962628 @default.
- W4313531424 hasAuthorship W4313531424A5085782739 @default.
- W4313531424 hasBestOaLocation W43135314241 @default.
- W4313531424 hasConcept C104317684 @default.
- W4313531424 hasConcept C119857082 @default.
- W4313531424 hasConcept C124101348 @default.
- W4313531424 hasConcept C148483581 @default.
- W4313531424 hasConcept C150194340 @default.
- W4313531424 hasConcept C154945302 @default.